Grace Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5796798/publications.pdf Version: 2024-02-01

		840776	713466
20	1,564	11	21
papers	citations	h-index	g-index
22	22	22	2053
all docs	docs citations	times ranked	citing authors

CRACE LUNC

#	Article	IF	CITATIONS
1	Enteral ferric citrate absorption is dependent on the iron transport protein ferroportin. Kidney International, 2022, 101, 711-719.	5.2	8
2	Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. ELife, 2022, 11, .	6.0	18
3	Renoprotective effects of ferric citrate in a mouse model of chronic kidney disease. Scientific Reports, 2022, 12, 6695.	3.3	1
4	Hepcidin and Erythroferrone Complement the Athlete Biological Passport in the Detection of Autologous Blood Transfusion. Medicine and Science in Sports and Exercise, 2022, 54, 1604-1616.	0.4	13
5	Associations among erythropoietic, iron-related, and FGF23 parameters in pediatric kidney transplant recipients. Pediatric Nephrology, 2021, 36, 3241-3249.	1.7	3
6	Effects of altitude and recombinant human erythropoietin on iron metabolism: a randomized controlled trial. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R152-R161.	1.8	9
7	Regulation of iron homeostasis through the erythroferroneâ€hepcidin axis in sickle cell disease. British Journal of Haematology, 2020, 189, 1204-1209.	2.5	13
8	Transgenic Mice Overexpressing Erythroferrone, a Novel Erythrokine, Develop Iron Overload and Multi-Organ Iron-Independent Abnormalities. Blood, 2020, 136, 12-12.	1.4	1
9	Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrology Dialysis Transplantation, 2019, 34, 2057-2065.	0.7	73
10	A variant erythroferrone disrupts iron homeostasis in <i>SF3B1</i> -mutated myelodysplastic syndrome. Science Translational Medicine, 2019, 11, .	12.4	55
11	Levels of the erythropoietin-responsive hormone erythroferrone in mice and humans with chronic kidney disease. Haematologica, 2018, 103, e141-e142.	3.5	38
12	Intravenous Iron Does Not Augment the Hemoglobin Mass Response to Simulated Hypoxia. Medicine and Science in Sports and Exercise, 2018, 50, 1669-1678.	0.4	32
13	Fetal presentation of congenital dyserythropoietic anemia type 1 with novel compound heterozygous CDAN1 mutations. Blood Cells, Molecules, and Diseases, 2018, 71, 63-66.	1.4	8
14	Increased serum hepcidin contributes to the anemia of chronic kidney disease in a murine model. Haematologica, 2017, 102, e85-e88.	3.5	17
15	Erythroferrone contributes to hepcidin repression in a mouse model of malarial anemia. Haematologica, 2017, 102, 60-68.	3.5	29
16	<i>Hamp1</i> mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice. American Journal of Physiology - Renal Physiology, 2017, 313, G511-G523.	3.4	8
17	Immunoassay for human serum erythroferrone. Blood, 2017, 130, 1243-1246.	1.4	104
18	Hepcidin-Induced Hypoferremia Is a Critical Host Defense Mechanism against the Siderophilic Bacterium Vibrio vulnificus. Cell Host and Microbe, 2015, 17, 47-57.	11.0	194

#	Article	IF	CITATIONS
19	Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 2014, 46, 678-684.	21.4	890
20	Testing the Iron Hypothesis in a Mouse Model of Atherosclerosis. Cell Reports, 2013, 5, 1436-1442.	6.4	44