Subhra Jana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5796402/publications.pdf Version: 2024-02-01

SURHDA JANA

#	Article	IF	CITATIONS
1	Exploring flowery MnO ₂ /Ag nanocomposite as an efficient solar-light-driven photocatalyst. New Journal of Chemistry, 2022, 46, 4189-4197.	2.8	5
2	Recent progress in materials development for CO ₂ conversion: issues and challenges. Materials Advances, 2021, 2, 3161-3187.	5.4	25
3	Ni-, Co-, and Mn-Doped Fe ₂ O ₃ Nano-Parallelepipeds for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 5131-5140.	5.0	33
4	Halloysite Nanotubes with Immobilized Plasmonic Nanoparticles for Biophotonic Applications. Applied Sciences (Switzerland), 2021, 11, 4565.	2.5	7
5	Synthesis of Template-Free Iron Oxyhydroxide Nanorods for Sunlight-Driven Photo-Fenton Catalysis. ACS Omega, 2021, 6, 27905-27912.	3.5	8
6	Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis. Nanoscale Advances, 2020, 2, 417-424.	4.6	15
7	Parametric Study and Detailed Kinetic Understanding of CO2 Adsorption over High-Surface-Area Flowery Silica Nanomaterials. Industrial & Engineering Chemistry Research, 2020, 59, 21393-21402.	3.7	9
8	MnO ₂ flowery nanocomposites for efficient and fast removal of mercury(<scp>ii</scp>) from aqueous solution: a facile strategy and mechanistic interpretation. Dalton Transactions, 2020, 49, 6790-6800.	3.3	19
9	Chromogenic-Functionalized Silica Nanoflower Composites for the Detection of Carbon Dioxide. ACS Applied Nano Materials, 2020, 3, 4321-4328.	5.0	7
10	Thiophene containing microporous and mesoporous nanoplates for separation of mercury from aqueous solution. New Journal of Chemistry, 2019, 43, 3341-3349.	2.8	27
11	Light-driven synthesis of uniform dandelion-like mesoporous silica nanoflowers with tunable surface area for carbon dioxide uptake. Chemical Engineering Journal, 2019, 374, 1118-1126.	12.7	24
12	Plasmonic Properties of Halloysite Nanotubes with Immobilized Silver Nanoparticles for Applications in Surfaceâ€Enhanced Raman Scattering. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800886.	1.8	9
13	Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2019, 276, 107-132.	4.4	129
14	Exploring βâ€FeOOH Nanorods as an Efficient Adsorbent for Arsenic and Organic Dyes. ChemistrySelect, 2018, 3, 2467-2473.	1.5	26
15	Advances in Porous Adsorbents for CO2 Capture and Storage. , 2018, , .		7
16	Modelâ€Free Estimation of Energyâ€Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamineâ€6G FRET Couple. Chemistry - an Asian Journal, 2018, 13, 3296-3303.	3.3	13
17	Clay-Based Nanocomposites as Recyclable Adsorbent toward Hg(II) Capture: Experimental and Theoretical Understanding. ACS Omega, 2018, 3, 6283-6292.	3.5	29
18	A tubular nanoreactor directing the formation of in situ iron oxide nanorods with superior photocatalytic activity. Environmental Science: Nano, 2017, 4, 596-603.	4.3	28

Subhra Jana

#	Article	IF	CITATIONS
19	Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application. Colloids and Surfaces B: Biointerfaces, 2017, 151, 249-254.	5.0	61
20	Light-Assisted Synthesis of Hierarchical Flower-Like MnO ₂ Nanocomposites with Solar Light Induced Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9086-9094.	6.7	86
21	Assessing Atmospheric CO ₂ Entrapped in Clay Nanotubes using Residual Gas Analyzer. Analytical Chemistry, 2016, 88, 2205-2211.	6.5	22
22	Investigation of halloysite nanotubes with deposited silver nanoparticles by methods of optical spectroscopy. Physics of the Solid State, 2016, 58, 601-605.	0.6	9
23	Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. Journal of Breath Research, 2016, 10, 026010.	3.0	47
24	Moisture induced isotopic carbon dioxide trapping from ambient air. Journal of Materials Chemistry A, 2016, 4, 7632-7640.	10.3	18
25	Diffusion Assisted Bimolecular Electron Injection to CdS Quantum Dots: Existence of Different Regimes in Time Dependent Sink Term of Collins–Kimball Model. Journal of Physical Chemistry C, 2016, 120, 5308-5314.	3.1	16
26	Mechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2. Scientific Reports, 2015, 5, 10936.	3.3	23
27	Halloysite Nanotubes Capturing Isotope Selective Atmospheric CO2. Scientific Reports, 2015, 5, 8711.	3.3	70
28	A facile approach to fabricate halloysite/metal nanocomposites with preformed and in situ synthesized metal nanoparticles: a comparative study of their enhanced catalytic activity. Dalton Transactions, 2015, 44, 8906-8916.	3.3	43
29	Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Transactions, 2015, 44, 18692-18717.	3.3	22
30	Development of novel inorganic–organic hybrid nanocomposites as a recyclable adsorbent and catalyst. RSC Advances, 2014, 4, 34435.	3.6	18
31	Synthesis and Modeling of Hollow Intermetallic Ni–Zn Nanoparticles Formed by the Kirkendall Effect. Nano Letters, 2013, 13, 3618-3625.	9.1	82
32	Seeded growth induced amorphous to crystalline transformation of niobium oxide nanostructures. Nanoscale, 2012, 4, 1782.	5.6	13
33	Layer-by-Layer Deposition of Silver/Gold Nanoparticles for Catalytic Reduction of Nitroaromatics. Journal of Nanoscience and Nanotechnology, 2010, 10, 847-859.	0.9	3
34	Room Temperature Ferromagnetic Ni Nanocrystals: An Efficient Transition Metal Platform for Manifestation of Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2009, 113, 6022-6032.	3.1	15
35	A Green Chemistry Approach for the Synthesis of Flower-like Ag-Doped MnO ₂ Nanostructures Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 1386-1392.	3.1	111
36	New hydrothermal process for hierarchical TiO2 nanostructures. CrystEngComm, 2009, 11, 1210.	2.6	47

Subhra Jana

#	Article	IF	CITATIONS
37	Synthesis of Superparamagnetic β-MnO ₂ Organosol: a Photocatalyst for the Oxidative Phenol Coupling Reaction. Inorganic Chemistry, 2008, 47, 5558-5560.	4.0	33
38	Controlled Interparticle Spacing for Surface-Modified Gold Nanoparticle Aggregates. Langmuir, 2008, 24, 5562-5568.	3.5	75
39	Synthesis, Characterization and Catalytic Application of Silver Nanoshell Coated Functionalized Polystyrene Beads. Journal of Nanoscience and Nanotechnology, 2007, 7, 2151-2156.	0.9	37
40	Light-Induced Hydrolysis of Nitriles by Photoproduced α-MnO2 Nanorods on Polystyrene Beads. Organic Letters, 2007, 9, 2191-2193.	4.6	32
41	Shape-Selective Synthesis, Magnetic Properties, and Catalytic Activity of Single Crystalline β-MnO ₂ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 16272-16277.	3.1	92
42	Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles:  Study on Heterogeneous and Homogeneous Catalytic Process. Journal of Physical Chemistry C, 2007, 111, 4596-4605.	3.1	736
43	Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione. New Journal of Chemistry, 2006, 30, 1333-1339.	2.8	33
44	Exploitation of Electrostatic Field Force for Immobilization and Catalytic Reduction ofo-Nitrobenzoic Acid to Anthranilic Acid on Resin-bound Silver Nanocomposites. Langmuir, 2006, 22, 7091-7095.	3.5	38
45	Synthesis of silver nanoshell-coated cationic polystyrene beads: A solid phase catalyst for the reduction of 4-nitrophenol. Applied Catalysis A: General, 2006, 313, 41-48.	4.3	273
46	Doping of Ni in α-Fe ₂ O ₃ Nanoclews To Boost Oxygen Evolution Electrocatalysis. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	10