Mauro Sambi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5796242/publications.pdf

Version: 2024-02-01

92 papers

2,947 citations

172386 29 h-index 51 g-index

94 all docs 94 docs citations 94 times ranked 3827 citing authors

#	Article	IF	CITATIONS
1	Donation and back-donation in cis- and trans- $[(\hat{i}\cdot 5-C5H5)Fe(\hat{i}\cdot 1-CO)(\hat{i}\cdot 4-CO)]$ 2 tautomers: Which relative is more generous? An ETS-NOCV bond analysis. Inorganica Chimica Acta, 2022, 536, 120897.	1.2	О
2	Characterization and Modeling of Reduced-Graphene Oxide Ambipolar Thin-Film Transistors. IEEE Transactions on Electron Devices, 2022, 69, 3192-3198.	1.6	7
3	Real-time threshold voltage compensation on dual-gate electrolyte-gated organic field-effect transistors. Organic Electronics, 2022, 106, 106531.	1.4	5
4	Enabling Circular Economy: The Overlooked Role of Inorganic Materials Chemistry. Chemistry - A European Journal, 2021, 27, 6676-6695.	1.7	6
5	Au(111) Surface Contamination in Ambient Conditions: Unravelling the Dynamics of the Work Function in Air. Advanced Materials Interfaces, 2021, 8, 2100068.	1.9	12
6	A Theoretical Study of the Occupied and Unoccupied Electronic Structure of High- and Intermediate-Spin Transition Metal Phthalocyaninato (Pc) Complexes: VPc, CrPc, MnPc, and FePc. Nanomaterials, 2021, 11, 54.	1.9	6
7	cis-[(η5-C5H5)Fe(η1-CO)(μ-CO)]2, the poor relative between cis and trans tautomers. A theoretical study of the gas-phase Fe L3-edge and C and O K-edge XAS of trans-/cis-[(η5-C5H5)Fe(η1-CO)(μ-CO)]2. Physical Chemistry Chemical Physics, 2021, 23, 24661-24668.	1.3	1
8	Templating Effect of Different Low-Miller-Index Gold Surfaces on the Bottom-Up Growth of Graphene Nanoribbons. ACS Applied Nano Materials, 2020, 3, 11497-11509.	2.4	2
9	Enhanced Magnetism through Oxygenation of FePc/Ag(110) Monolayer Phases. Journal of Physical Chemistry C, 2020, 124, 13993-14006.	1.5	4
10	On-surface synthesis of extended linear graphyne molecular wires by protecting the alkynyl group. Physical Chemistry Chemical Physics, 2020, 22, 12180-12186.	1.3	12
11	Onâ€Surface Photochemistry of Preâ€Ordered 1â€Methylâ€2â€phenylâ€acetylenes: Câ€H Bond Activation and Intermolecular Coupling on Highly Oriented Pyrolytic Graphite. ChemPhysChem, 2019, 20, 2317-2321.	1.0	1
12	Comparative Experimental and Theoretical Study of the Fe L _{2,3} -Edges X-ray Absorption Spectroscopy in Three Highly Popular, Low-Spin Organoiron Complexes: [Fe(CO) ₅], [(i- ⁵ -C ₅ H ₅)Fe(CO)(i ¹ /4-CO)] ₂ , and [(i- ⁵ -C ₅ H ₅) ₂ Fe]. Inorganic Chemistry, 2019, 58, 5844-5857.	1.9	11
13	An experimental and theoretical study of metallorganic coordination networks of tetrahydroxyquinone on Cu(111). New Journal of Chemistry, 2019, 43, 19186-19192.	1.4	3
14	Comparative Experimental and Theoretical Study of the C and O K-Edge X-ray Absorption Spectroscopy in Three Highly Popular, Low Spin Organoiron Complexes: [Fe(CO) ₅], [(Î- ^{5-C₅H₅)Fe(CO)(Î-/4-CO)]₂, and [(Î-^{5-C₅H₅)₂Fe]. Inorganic Chemistry, 2019, 58,}}	1.9	7
15	16411-16423. Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2018, 9, 2510-2517.	2.1	31
16	Theoretical Investigation of the Electronic Properties of Three Vanadium Phthalocyaninato (Pc) Based Complexes: PcV, PcVO, and PcVI. Inorganic Chemistry, 2018, 57, 1859-1869.	1.9	13
17	Substrate involvement in dioxygen bond dissociation catalysed by iron phthalocyanine supported on Ag(100). Chemical Communications, 2018, 54, 9418-9421.	2.2	13
18	The electronic properties of three popular high spin complexes [TM(acac) ₃ , TM = Cr, Mn, and Fe] revisited: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2017, 19, 24840-24854.	1.3	22

#	Article	IF	Citations
19	Mn(acac) 2 and Mn(acac) 3 complexes, a theoretical modeling of their L 2,3 -edges X-ray absorption spectra. Polyhedron, 2017, 135, 216-223.	1.0	14
20	A long-range ordered array of copper tetrameric units embedded in an on-surface metal organic framework. Journal of Chemical Physics, 2017, 147, 214706.	1.2	6
21	Electronic structures of CuTPP and CuTPP(F) complexes. A combined experimental and theoretical study I. Physical Chemistry Chemical Physics, 2016, 18, 18727-18738.	1.3	16
22	Electronic structure of CuTPP and CuTPP(F) complexes: a combined experimental and theoretical study II. Physical Chemistry Chemical Physics, 2016, 18, 24890-24904.	1.3	19
23	Metal-Free on-Surface Photochemical Homocoupling of Terminal Alkynes. Journal of the American Chemical Society, 2016, 138, 10151-10156.	6.6	36
24	L _{2,3} -edges absorption spectra of a 2D complex system: a theoretical modelling. Physical Chemistry Chemical Physics, 2016, 18, 28110-28116.	1.3	16
25	Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires. ACS Nano, 2016, 10, 2644-2651.	7.3	40
26	Theoretical modeling of the L _{2,3} -edge X-ray absorption spectra of Mn(acac) ₂ complexes. Physical Chemistry Chemical Physics, 2016, 18, 2242-2249.	1.3	17
27	Ligand-Field Strength and Symmetry-Restricted Covalency in CullComplexes - a Near-Edge X-ray Absorption Fine Structure Spectroscopy and Time-Dependent DFT Study. European Journal of Inorganic Chemistry, 2015, 2015, 2707-2713.	1.0	8
28	Multiple doping of graphene oxide foams and quantum dots: new switchable systems for oxygen reduction and water remediation. Journal of Materials Chemistry A, 2015, 3, 14334-14347.	5.2	57
29	Reversible Fe Magnetic Moment Switching in Catalytic Oxygen Reduction Reaction of Fe-Phthalocyanine Adsorbed on Ag(110). Journal of Physical Chemistry C, 2015, 119, 12488-12495.	1.5	16
30	Molecules–Oligomers–Nanowires–Graphene Nanoribbons: A Bottom-Up Stepwise On-Surface Covalent Synthesis Preserving Long-Range Order. Journal of the American Chemical Society, 2015, 137, 1802-1808.	6.6	221
31	On-surface photo-dissociation of C–Br bonds: towards room temperature Ullmann coupling. Chemical Communications, 2015, 51, 12593-12596.	2.2	66
32	Role of the Substrate Orientation in the Photoinduced Electron Dynamics at the Porphyrin/Ag Interface. Journal of Physical Chemistry Letters, 2015, 6, 3632-3638.	2.1	10
33	XAS of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 2001-2011.	1.3	10
34	A theoretical study of the L3 pre-edge XAS in Cu(ii) complexes. Physical Chemistry Chemical Physics, 2014, 16, 19852-19855.	1.3	17
35	Structurally Tunable Self-Assembled 2D Cocrystals of C ₆₀ and Porphyrins on the Ag (110) Surface. Journal of Physical Chemistry C, 2014, 118, 1587-1593.	1.5	17
36	Stereoselective Photopolymerization of Tetraphenylporphyrin Derivatives on Ag(110) at the Subâ∈Monolayer Level. Chemistry - A European Journal, 2014, 20, 14296-14304.	1.7	35

3

#	Article	IF	Citations
37	From novel PtSn/Pt(110) surface alloys to SnOx/Pt(110) nano-oxides. Surface Science, 2013, 615, 103-109.	0.8	5
38	Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nature Materials, $2012, 11, 970-977$.	13.3	131
39	$[Zn10(\hat{A}\mu 4-S)(\hat{A}\mu 3-S)6(Py)9(SO4)3]$ as a molecular model of ZnS surfaces: an experimental and theoretical study. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	O
40	Interplay between Layer-Resolved Chemical Composition and Electronic Structure in a Sn/Pt(110) Surface Alloy. Journal of Physical Chemistry C, 2011, 115, 14264-14269.	1.5	14
41	Chromium wheels quasi-hexagonal 2D assembling by direct UHV sublimation. Chemical Communications, 2011, 47, 5744.	2.2	16
42	Stability of TiO ₂ Polymorphs: Exploring the Extreme Frontier of the Nanoscale. ChemPhysChem, 2010, 11, 1550-1557.	1.0	31
43	Coverage-Dependent Architectures of Iron Phthalocyanine on Ag(110): a Comprehensive STM/DFT Study. Journal of Physical Chemistry C, 2010, 114, 2144-2153.	1.5	42
44	STM Investigation of Temperature-Dependent Two-Dimensional Supramolecular Architectures of C60 and Amino-tetraphenylporphyrin on Ag(110). Langmuir, 2010, 26, 2466-2472.	1.6	14
45	Fullerene/Porphyrin Multicomponent Nanostructures on Ag(110): From Supramolecular Self-Assembly to Extended Copolymers. ACS Nano, 2010, 4, 5147-5154.	7.3	42
46	Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. Journal of Computational Chemistry, 2009, 30, 934-939.	1.5	653
47	Silver nanostructures on a c(4×2)-NiOx/Pd(100) monolayer. Surface Science, 2008, 602, 499-505.	0.8	2
48	Ultrathin TiO $<$ sub $>$ 2 $<$ /sub $>$ Films on (1Ã $-$ 2)-Pt(110): a LEED, Photoemission, STM, and Theoretical Investigation. Journal of Physical Chemistry C, 2008, 112, 20038-20049.	1.5	20
49	Mobility of Au on TiO <i></i> >Kip> Substrates with Different Stoichiometry and Defectivity. Journal of Physical Chemistry C, 2008, 112, 3187-3190.	1.5	25
50	Temperature-Dependent Self-Assemblies of C ₆₀ on (1 × 2)-Pt(110):  A STM/DFT Investigation. Journal of Physical Chemistry C, 2008, 112, 378-390.	1.5	17
51	Strong Bonding of Single C60Molecules to (1 × 2)-Pt(110):  an STM/DFT Investigation. Journal of Physical Chemistry C, 2007, 111, 9365-9373.	1.5	17
52	Core and Valence Band Photoemission Study of Highly Strained Ultrathin NiO Films on Pd(100). Journal of Physical Chemistry C, 2007, 111, 3736-3743.	1.5	10
53	STM study of the initial stages of C60 adsorption on the Pt(110)-(1 \tilde{A} —2) surface. Applied Surface Science, 2006, 252, 5534-5537.	3.1	7
54	Bottom-Up Assembly of Single-Domain Titania Nanosheets on $(1\tilde{A}-2)\hat{a}^{-2}$ Pt (110). Physical Review Letters, 2006, 97, 156101.	2.9	79

#	Article	IF	Citations
55	A LEED l–V structural determination of the c(4×2) Ni3O4/Pd(100) monolayer phase: an ordered array of Ni vacancies. Surface Science, 2005, 576, 1-8.	0.8	35
56	Growth and thermal behaviour of NiO nanolayers on Pd(100). Surface Science, 2005, 599, 1-13.	0.8	37
57	Ultrathin TiOxFilms on Pt(111):Â A LEED, XPS, and STM Investigation. Journal of Physical Chemistry B, 2005, 109, 24411-24426.	1.2	160
58	First-Principles Studies of Vanadiaâ^'Titania Catalysts:Â Beyond the Monolayer. Journal of Physical Chemistry B, 2005, 109, 21766-21771.	1.2	35
59	Experimental and Theoretical Study of a Surface Stabilized Monolayer Phase of Nickel Oxide on Pd(100). Journal of Physical Chemistry B, 2005, 109, 17197-17204.	1.2	45
60	Reactive deposition of NiO ultrathin films on Pd(100). Surface Science, 2004, 569, 105-117.	0.8	20
61	The growth of ultrathin films of vanadium oxide on TiO2(). Surface Science, 2004, 562, 150-156.	0.8	30
62	Epitaxial growth of molybdenum on TiO2(110). Surface Science, 2003, 544, 135-146.	0.8	12
63	Vanadium on TiO2(): adsorption site and sub-surface migration. Surface Science, 2003, 546, 117-126.	0.8	25
64	Structure of highly strained ultrathin Ni films on Pd(). Surface Science, 2003, 522, 1-7.	0.8	29
65	A photoelectron diffraction study of the surface-V2O3 (2 $ ilde{A}$ —2) layer on Pd(111). Surface Science, 2003, 529, L234-L238.	0.8	13
66	Growth of NiO ultrathin films on Pd(100) by post-oxidation of Ni films: the effect of pre-adsorbed oxygen. Surface Science, 2003, 537, 36-54.	0.8	32
67	Estimating soft-mode frequencies of surface overlayers by means of photoelectron diffraction: The(2×2)surface-V2O3/Pd(111). Physical Review B, 2003, 68, .	1.1	3
68	Structural studies of epitaxial ultrathin oxide films and nanoclusters by means of angle-scanned photoelectron diffraction (XPD). Journal of Physics Condensed Matter, 2002, 14, 4101-4117.	0.7	7
69	Electronic properties and structure of vanadia ultra-thin films grown on TiO2() in a water vapour ambient. Surface Science, 2001, 494, 213-228.	0.8	13
70	Growth and structural characterisation of vanadium oxide ultrathin films on TiO2 (110). Thin Solid Films, 2001, 400, 26-36.	0.8	26
71	Atomically Resolved Images from Near Node Photoelectron Holography Experiments on Al(111). Physical Review Letters, 2001 , 86 , 2337 - 2340 .	2.9	46
72	The structure of an ultrathin VOx (xâ‰^1) film grown epitaxially on TiO2 (110). Surface Science, 2000, 461, 118-128.	0.8	25

#	Article	IF	CITATIONS
73	An ARPEFS study of the structure of an epitaxial VO2 monolayer at the TiO2(110) surface. Applied Surface Science, 1999, 142, 146-151.	3.1	26
74	A photoemission and resonant photoemission study of Ba deposition at the TiO2 (110) surface. Applied Surface Science, 1999, 142, 135-139.	3.1	15
75	Ultrathin V films on Pt (111): a structural study by means of X-ray photoelectron spectroscopy and diffraction. Surface Science, 1999, 426, 235-250.	0.8	8
76	Ultrathin VOx/TiO2(110) (xâ‰^1) film preparation by controlled oxidation of metal deposits. Surface Science, 1999, 436, 227-236.	0.8	37
77	Strain analysis of epitaxial ultrathin films on Pt(111). Surface Science, 1998, 400, 239-246.	0.8	17
78	Polarization effects to enhance surface sensitivity of angle-scanned X-ray photoelectron diffraction in synchrotron-radiation-based experiments. Surface Science, 1998, 415, L1007-L1015.	0.8	4
79	Growth and the structure of epitaxialVO2at theTiO2(110) surface. Physical Review B, 1997, 55, 7850-7858.	1.1	90
80	EVIDENCE BY ANGLE-SCANNED PHOTOELECTRON DIFFRACTION FOR A CO-INDUCED RESTRUCTURING OF A Ni/Pt(111) MONOLAYER. Surface Review and Letters, 1997, 04, 1185-1189.	0.5	4
81	Angle-Scanned Photoelectron Diffraction. , 1997, , 237-266.		0
82	Photoelectron diffraction study on the structure of a vanadium ultrathin film deposited at the TiO2(110) surface. Surface Science, 1996, 349, L169-L173.	0.8	45
83	Angle-Scanned Photoelectron Diffraction: Probing crystalline ultrathin films. Advanced Materials, 1996, 8, 315-326.	11.1	30
84	Early stages of epitaxial growth of vanadium oxide at the TiO2(110) surface studied by photoelectron diffraction. Physical Review B, 1996, 54, 13464-13467.	1.1	38
85	Angle-scanned photoelectron diffraction chemisorption studies using heteroatomic surface monolayers. Surface Science, 1995, 331-333, 35-41.	0.8	4
86	Photoelectron diffraction study of ultrathin film growth of Ni on Pt(111). Surface Science, 1995, 340, 215-223.	0.8	22
87	Surface carboxylate species on Cu(100) studied by angle-scanned photoelectron diffraction and LCAO-LDF calculations. Surface Science, 1994, 315, 309-322.	0.8	32
88	Angle-scanned photoelectron diffraction chemisorption study of c($2 \text{ A}-2$)-O on Ni(1 ML)/Cu(100). Surface Science, 1994, 321, L214-L218.	0.8	8
89	An angle-scanned photoelectron diffraction study on the surface relaxation of ZnO (0001). Surface Science, 1994, 319, 149-156.	0.8	38
90	A LCAO-LDF study of formate chemisorption on Cu(100). Surface Science, 1994, 307-309, 95-100.	0.8	23

#	Article	IF	CITATION
91	Azimuthal orientation of formate and acetate on Cu(100) studied by angle-scanned photoelectron diffraction. Surface Science, 1993, 291, L756-L758.	0.8	11
92	Partial Oxidation in a Dense Phase Sub-Monolayer of Fe-Phthalocyanine on Ag(110). Solid State Phenomena, 0, 257, 219-222.	0.3	0