
Marco Milanesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5795762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The OECI Model: The Experience of INT Milan with a Focus on the Integration of Psycho-oncology Support. Tumori, 2015, 101, S25-S32.	0.6	0
2	Predictors of CD34+ Cell Mobilization and Collection in Adult Men With Germ Cell Tumors: Implications for the Salvage Treatment Strategy. Clinical Genitourinary Cancer, 2014, 12, 196-202.e1.	0.9	3
3	Successful second autologous engraftment after long duration storage of hematopoietic stem cells. Bone Marrow Transplantation, 2013, 48, 1480-1481.	1.3	2
4	Human CD34+ cells engineered to express membrane-bound tumor necrosis factor–related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood, 2010, 115, 2231-2240.	0.6	32
5	Peripheral blood stem cell collection in multiple myeloma: A retrospective analysis of 6 years leukapheresis activity in 109 patients treated at the Istituto Nazionale dei Tumori of Milan. Journal of Clinical Apheresis, 2009, 24, 134-140.	0.7	4
6	Haploidentical stem cell transplantation after a reduced-intensity conditioning regimen for the treatment of advanced hematologic malignancies: posttransplantation CD8-depleted donor lymphocyte infusions contribute to improve T-cell recovery. Blood, 2009, 113, 4771-4779.	0.6	69
7	IFN-γ Enhances the Antimyeloma Activity of the Fully Human Anti–Human Leukocyte Antigen-DR Monoclonal Antibody 1D09C3. Cancer Research, 2007, 67, 3269-3275.	0.4	18
8	Highly efficient gene transfer into mobilized CD34+ hematopoietic cells using serotype-5 adenoviral vectors and BoosterExpress Reagent. Experimental Hematology, 2007, 35, 888-897.	0.2	5
9	Placental Growth Factor-1 Potentiates Hematopoietic Progenitor Cell Mobilization Induced by Granulocyte Colony-Stimulating Factor in Mice and Nonhuman Primates. Stem Cells, 2007, 25, 252-261.	1.4	12
10	Antitumor Activity of Human CD34+Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Human Gene Therapy, 2006, 17, 1225-1240.	1.4	33
11	CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice. Experimental Hematology, 2006, 34, 721-727.	0.2	25
12	The Anti–Human Leukocyte Antigen-DR Monoclonal Antibody 1D09C3 Activates the Mitochondrial Cell Death Pathway and Exerts a Potent Antitumor Activity in Lymphoma-Bearing Nonobese Diabetic/Severe Combined Immunodeficient Mice. Cancer Research, 2006, 66, 1799-1808.	0.4	37
13	Antitumor Activity of Human CD34+Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Human Gene Therapy, 2006, .	1.4	Ο
14	Reduced-intensity conditioning containing low-dose alemtuzumab before allogeneic peripheral blood stem cell transplantation: graft-versus-host disease is decreased but T-cell reconstitution is delayed. Experimental Hematology, 2005, 33, 920-927.	0.2	40
15	Mobilization of primitive and committed hematopoietic progenitors in nonhuman primates treated with defibrotide and recombinant human granulocyte colony-stimulating factor. Experimental Hematology, 2004, 32, 68-75.	0.2	7
16	Age- and irradiation-associated loss of bone marrow hematopoietic function in mice is reversed by recombinant human growth hormone. Experimental Hematology, 2004, 32, 171-178.	0.2	48
17	Use of recombinant human growth hormone (rhGH) plus recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+ cells in poor mobilizers. Blood, 2004, 103, 3287-3295.	0.6	47
18	Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99, 3838-3843.	0.6	2,907

#	Article	IF	CITATIONS
19	Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice. Cancer Research, 2002, 62, 6152-7.	0.4	18
20	Largeâ€scale feasibility of gene transduction into human CD34 ⁺ cellâ€derived dendritic cells by adenoviral/polycation complex. British Journal of Haematology, 2000, 111, 344-350.	1.2	0
21	Large-scale feasibility of gene transduction into human CD34+ cell-derived dendritic cells by adenoviral/polycation complex. British Journal of Haematology, 2000, 111, 344-350.	1.2	18
22	Recombinant Adenoviral Vector-LipofectAMINE Complex for Gene Transduction into Human T Lymphocytes. Human Gene Therapy, 1999, 10, 1875-1884.	1.4	17
23	Adenovirus vectors for gene transduction into mobilized blood CD34+ cells. Gene Therapy, 1998, 5, 465-472.	2.3	38
24	Combined negative and positive selection of mobilized CD34 + blood cells. British Journal of Haematology, 1996, 94, 716-721.	1.2	11
25	Improvement of supportive nursing care in cancer patients autografted with bone marrow and mobilized peripheral blood haematopoietic progenitors. European Journal of Cancer Care, 1996, 5, 21, 25	0.7	3