Yan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5795405/publications.pdf Version: 2024-02-01

VANLIANC

#	Article	IF	CITATIONS
1	A peptide-based vaccine ACP derived from antigens of Mycobacterium tuberculosis induced Th1 response but failed to enhance the protective efficacy of BCG in mice. Indian Journal of Tuberculosis, 2022, 69, 482-495.	0.7	13
2	Peptides-Based Vaccine MP3RT Induced Protective Immunity Against Mycobacterium Tuberculosis Infection in a Humanized Mouse Model. Frontiers in Immunology, 2021, 12, 666290.	4.8	32
3	Prediction and analyses of HLAâ€II restricted Mycobacterium tuberculosis CD4 + T cell epitopes in the Chinese population. Biotechnology and Applied Biochemistry, 2021, , .	3.1	2
4	Comparative study on the antituberculous effect and mechanism of the traditional Chinese medicines NiuBeiXiaoHe extract and JieHeWan. Military Medical Research, 2021, 8, 34.	3.4	2
5	Chinese Traditional Medicine NiuBeiXiaoHe (NBXH) Extracts Have the Function of Antituberculosis and Immune Recovery in BALB/c Mice. Journal of Immunology Research, 2021, 2021, 1-20.	2.2	3
6	Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Military Medical Research, 2020, 7, 25.	3.4	13
7	Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BioMed Research International, 2020, 2020, 1-21.	1.9	28
8	Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population. Infectious Diseases of Poverty, 2020, 9, 46.	3.7	11
9	Inhibition of breast cancer cells by targeting E2F-1 gene and expressing IL15 oncolytic adenovirus. Bioscience Reports, 2019, 39, .	2.4	18
10	Comparison of Three Cellular Immunoassays to Detect Tuberculosis Infection in 876 Healthy Recruits. Journal of Interferon and Cytokine Research, 2019, 39, 547-553.	1.2	0
11	Immunogenicity and Therapeutic Effects of Latency-Associated Genes in a Mycobacterium Tuberculosis Reactivation Mouse Model. Human Gene Therapy Methods, 2019, 30, 60-69.	2.1	11
12	The current status, challenges, and future developments of new tuberculosis vaccines. Human Vaccines and Immunotherapeutics, 2018, 14, 1697-1716.	3.3	81
13	Cytokine and soluble adhesion molecule profiles and biomarkers for treatment monitoring in Re-treated smear-positive patients with pulmonary tuberculosis. Cytokine, 2018, 108, 9-16.	3.2	16
14	Immunotherapeutic effects of Mycobacterium tuberculosis rv3407 DNA vaccine in mice. Autoimmunity, 2018, 51, 417-422.	2.6	8
15	Novel epitopes identified from Mycobacterium tuberculosis antigen Rv2629induces cytotoxic T lymphocyte response. Immunology Letters, 2018, 203, 21-28.	2.5	3
16	Immunogenicity and therapeutic effects of a Mycobacterium tuberculosis rv2190c DNA vaccine in mice. BMC Immunology, 2017, 18, 11.	2.2	13
17	Therapeutic effects of traditional Chinese medicine Niubeixiaohe in mouse tuberculosis models. Journal of Ethnopharmacology, 2017, 195, 318-323.	4.1	9
18	A new method of screening for latent tuberculosis infection: Results from army recruits in Beijing in 2014. Immunology Letters, 2017, 186, 28-32.	2.5	5

Yan Liang

#	Article	IF	CITATIONS
19	Immunogenicity and therapeutic effects of recombinant Ag85AB fusion protein vaccines in mice infected with Mycobacterium tuberculosis. Vaccine, 2017, 35, 3995-4001.	3.8	5
20	lmmunogenicity and Therapeutic Effects of pVAX1-rv1419 DNA from Mycobacterium tuberculosis. Current Gene Therapy, 2016, 16, 249-255.	2.0	10
21	Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice. Molecular Medicine Reports, 2016, 14, 1146-1152.	2.4	10
22	Evaluation of a wholeâ€blood chemiluminescent immunoassay of <scp>IFN</scp> â€Î³, <scp>IP</scp> â€10, and <scp>MCP</scp> â€1 for diagnosis of active pulmonary tuberculosis and tuberculous pleurisy patients. Apmis, 2016, 124, 856-864.	2.0	9
23	Potential novel markers to discriminate between active and latent tuberculosis infection in Chinese individuals. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 44, 8-13.	1.6	23
24	Differences in cardiovascular manifestations between ankylosing spondylitis patients with and without kyphosis. Clinical Rheumatology, 2016, 35, 2003-2008.	2.2	8
25	Immunogenicity and therapeutic effects of pVAX1- rv1419 DNA from Mycobacterium tuberculosis. Current Gene Therapy, 2016, , .	2.0	4
26	Immune responses to latent tuberculosis antigen Rv2659c in Chinese populations. Journal of Microbiology, Immunology and Infection, 2015, 48, 381-389.	3.1	15
27	Polymorphisms in the Interleukin 18 Receptor 1 Gene and Tuberculosis Susceptibility among Chinese. PLoS ONE, 2014, 9, e110734.	2.5	20
28	Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with <i>Mycobacterium tuberculosis</i> . FEMS Immunology and Medical Microbiology, 2012, 66, 419-426.	2.7	19
29	The treatment of mice infected with multi-drug-resistant Mycobacterium tuberculosis using DNA vaccines or in combination with rifampin. Vaccine, 2008, 26, 4536-4540.	3.8	24