Tiziana Cesca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Chirality in Diffractive Metasurfaces by Photothermal Deflection Technique. Applied Sciences (Switzerland), 2022, 12, 1109.	1.3	4
2	Selective Control of Eu3+ Radiative Emission by Hyperbolic Metamaterials. Materials, 2022, 15, 4923.	1.3	0
3	Lanthanide Ions Sensitization by Small Noble Metal Nanoclusters. ACS Photonics, 2021, 8, 1364-1376.	3.2	6
4	Photo-deflection technique for characterization of chirality in diffractive metasurfaces. , 2021, , .		0
5	Rich Broadband Chiral Behavior in Low-cost Plasmonic Nanostructures. , 2021, , .		0
6	Rich Near-Infrared Chiral Behavior in Diffractive Metasurfaces. Physical Review Applied, 2021, 16, .	1.5	16
7	Double-Langmuir model for optimized nanohole array-based plasmonic biosensors. Applied Surface Science, 2021, 556, 149802.	3.1	2
8	Diffracted Beams from Metasurfaces: High Chiral Detectivity by Photothermal Deflection Technique. Advanced Optical Materials, 2021, 9, 2100670.	3.6	16
9	Tunable Third-Order Nonlinear Optical Response in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>ïµ</mml:mi> -Near-Zero Multilayer Metamaterials. Physical Review Applied 2021, 16</mml:math 	1.5	7
10	Correlation between <i>in situ</i> structural and optical characterization of the semiconductor-to-metal phase transition of VO ₂ thin films on sapphire. Nanoscale, 2020, 12, 851-863.	2.8	40
11	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi>Au</mml:mi> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ag</mml:mi> Nanoparticles in Sapphire: A Three-Level Model</mml:math 	1.5	2
12	Description. Physical Review Applied. 2020, 14, Broadband tunable nonlinear optical response in plasmonic metamaterials -INVITED. EPJ Web of Conferences, 2020, 238, 11001.	0.1	1
13	All-Dielectric Silicon Nanoslots for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:msup><mml:mi>Er</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>+Photoluminescence Enhancement. Physical Review Applied. 2020. 14</mml:mo></mml:mrow></mml:msup></mml:math>	o> ¹ ∕7mml:	mrðw>
14	Optimal geometry for plasmonic sensing with non-interacting Au nanodisk arrays. Nanoscale Advances, 2020, 2, 3304-3315.	2.2	8
15	Diffractive dipolar coupling in non-Bravais plasmonic lattices. Nanoscale Advances, 2020, 2, 1261-1268.	2.2	14
16	Chiral effects in low-cost plasmonic arrays of elliptic nanoholes. Optical and Quantum Electronics, 2020, 52, 1.	1.5	17
17	Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver. Applied Sciences (Switzerland), 2020, 10, 1316.	1.3	21
18	Ordered arrays of metallic nanoprisms for photonic applications. , 2020, , 111-138.		0

#	Article	IF	CITATIONS
19	Polarization dependence of second harmonic generation from plasmonic nanoprism arrays. Scientific Reports, 2019, 9, 11514.	1.6	11
20	Hybrid Metal-Polystyrene Metasurfaces: Circular Dichroism Evidenced by Means of Photo-Acoustic Technique. , 2019, , .		0
21	Tuning ZnO nanorods photoluminescence through atmospheric plasma treatments. APL Materials, 2019, 7, .	2.2	20
22	Tuning the linear and nonlinear optical properties of ordered plasmonic nanoarrays by morphological control with thermal annealing. Applied Surface Science, 2019, 491, 67-74.	3.1	7
23	Buffer-layer-assisted morphological manipulation of metal nanoparticle arrays by laser irradiation. Applied Surface Science, 2019, 487, 726-733.	3.1	2
24	Photo-acoustic detection of chirality in metal-polystyrene metasurfaces. Applied Physics Letters, 2019, 114, 053101.	1.5	31
25	Bidimensional ordered plasmonic nanoarrays for nonlinear optics, nanophotonics and biosensing applications. Materials Science in Semiconductor Processing, 2019, 92, 2-9.	1.9	26
26	Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO ₂ phase change layers. Optics Express, 2019, 27, 24260.	1.7	12
27	Emission Rate Modification and Quantum Efficiency Enhancement of Er ³⁺ Emitters by Near-Field Coupling with Nanohole Arrays. ACS Photonics, 2018, 5, 2189-2199.	3.2	23
28	Control of silver clustering for broadband Er3+ luminescence sensitization in Er and Ag co-implanted silica. Journal of Luminescence, 2018, 197, 104-111.	1.5	27
29	Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays. Nanoscale, 2018, 10, 5182-5190.	2.8	24
30	Emission Efficiency Enhancement of Er ³⁺ Ions in Silica by Nearâ€Field Coupling With Plasmonic and Preâ€Plasmonic Nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700437.	0.8	8
31	Rare-earth fluorescence thermometry of laser-induced plasmon heating in silver nanoparticles arrays. Scientific Reports, 2018, 8, 13811.	1.6	8
32	GaN-Based Laser Wireless Power Transfer System. Materials, 2018, 11, 153.	1.3	26
33	Dichroic nonlinear absorption response of silver nanoprism arrays. RSC Advances, 2017, 7, 17741-17747.	1.7	21
34	Gold–silver alloy semi-nanoshell arrays for label-free plasmonic biosensors. Nanoscale, 2017, 9, 10117-10125.	2.8	28
35	Oxidation effects on the SERS response of silver nanoprism arrays. RSC Advances, 2017, 7, 369-378.	1.7	55
36	Spectral dependence of nonlinear absorption in ordered silver metallic nanoprism arrays. Scientific Reports, 2017, 7, 5307.	1.6	22

#	Article	IF	CITATIONS
37	Amplified sensitization of Er ³⁺ luminescence in silica by Au _N quantum clusters upon annealing in a reducing atmosphere. RSC Advances, 2016, 6, 99376-99384.	1.7	10
38	Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes. AIP Advances, 2015, 5, 107121.	0.6	1
39	Correlation between room temperature luminescence and energy-transfer in Er–Au co-implanted silica. Nuclear Instruments & Methods in Physics Research B, 2015, 362, 68-71.	0.6	0
40	Enhanced optical functionalities in silica by doping with Au-based nanostructures. Physica Status Solidi (B): Basic Research, 2015, 252, 119-123.	0.7	4
41	Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays. Nanoscale, 2015, 7, 12411-12418.	2.8	31
42	Optimal geometric parameters of ordered arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors. Biosensors and Bioelectronics, 2015, 65, 346-353.	5.3	30
43	Interatomic Coupling of Au Molecular Clusters and Er ³⁺ Ions in Silica. ACS Photonics, 2015, 2, 96-104.	3.2	19
44	Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics, 2015, 11, 281-287.	6.5	99
45	Au–Ag nanoalloy molecule-like clusters for enhanced quantum efficiency emission of Er ³⁺ ions in silica. Physical Chemistry Chemical Physics, 2015, 17, 28262-28269.	1.3	28
46	Gold-based nucleation in implanted silica studied by x-ray absorption spectroscopy. Ceramics International, 2015, 41, 8660-8664.	2.3	2
47	Controlling the Emission Rate of Er ³⁺ Ions by Dielectric Coupling with Thin Films. Journal of Physical Chemistry C, 2015, 119, 6728-6736.	1.5	10
48	Core–shell-like Au sub-nanometer clusters in Er-implanted silica. Nanoscale, 2015, 7, 8968-8977.	2.8	11
49	Effect of ultrasmall Au–Ag aggregates formed by ion implantation in Er-implanted silica on the 1.54î¼m Er3+ luminescence. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 11-14.	0.6	3
50	Luminescent ultra-small gold nanoparticles obtained by ion implantation in silica. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 7-10.	0.6	9
51	Energy-transfer from ultra-small Au nanoclusters to Er3+ ions: a short-range mechanism. Physical Chemistry Chemical Physics, 2014, 16, 15158.	1.3	10
52	Near-infrared room temperature luminescence of few-atom Au aggregates in silica: a path for the energy-transfer to Er ³⁺ ions. Nanoscale, 2014, 6, 1716-1724.	2.8	23
53	Au clustering formation by implantation in silica: optical, magnetic and sensing properties. Radiation Effects and Defects in Solids, 2013, 168, 418-430.	0.4	1
54	SiOC thin films: an efficient light source and an ideal host matrix for Eu^2+ ions. Optics Express, 2013, 21, 20280.	1.7	20

#	Article	IF	CITATIONS
55	Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets. Optics Express, 2012, 20, 4537.	1.7	65
56	Eu^3+ reduction and efficient light emission in Eu_2O_3 films deposited on Si substrates. Optics Express, 2012, 20, 5501.	1.7	30
57	Implantation damage effects on the Er ³⁺ luminescence in silica. Optics Express, 2012, 20, 16639.	1.7	20
58	Enhancement of the Er <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup></mml:mrow>in Er-doped silica by few-atom metal aggregates. Physical Review B, 2011, 83, .</mml:math>	nath>lumii	nescence
59	Enhancement of Er ³⁺ luminescence by metal aggregates. Radiation Effects and Defects in Solids, 2011, 166, 357-366.	0.4	2
60	On the contribution of secondary fluorescence to the Fe signal inÂproton-induced X-ray emission channeling measurements ofÂFe-doped GaN. Applied Physics A: Materials Science and Processing, 2010, 99, 433-436.	1.1	1
61	Nanopatterning of silica with mask-assisted ion implantation. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3211-3214.	0.6	19
62	Nonlinear optical properties of Au–Ag nanoplanets made by ion beam processing of bimetallic nanoclusters in silica. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3227-3230.	0.6	24
63	Electrical spectroscopy of high resistivity ion-implanted layers by current-voltage measurements. Applied Physics Letters, 2008, 93, 102114.	1.5	4
64	Effects of n-type doping on active Fe sites in ion implanted Fe in InP. Applied Physics Letters, 2006, 88, 251912.	1.5	2
65	Role of the Substrate Doping in the Activation of Fe2+ centers in Fe implanted InP. Materials Research Society Symposia Proceedings, 2005, 864, 151.	0.1	1
66	Evolution of the local Fe environment in high temperature implanted InP. , 2002, , .		0
67	Incorporation of Highly Concentrated Iron Impurities in InP by High Temperature Ion Implantation. Materials Research Society Symposia Proceedings, 2002, 719, 1021.	0.1	2
68	Structural and electrical investigation of high temperature Fe implanted GaInP layers lattice matched to GaAs. , 0, , .		0
69	High resistivity in GalnP/GaAs by high temperature Fe ion implantation. , 0, , .		0