
Carlos Antonio da Silva Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794695/publications.pdf Version: 2024-02-01

Carlos Antonio da Silva

#	Article	IF	CITATIONS
1	A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 2020, 178, 105791.	3.7	122
2	Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques. Remote Sensing, 2020, 12, 3237.	1.8	68
3	Demystifying sustainable soy in Brazil. Land Use Policy, 2019, 82, 349-352.	2.5	60
4	Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Scientific Reports, 2020, 10, 16246.	1.6	55
5	Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro - Brazil. Atmospheric Research, 2018, 212, 91-105.	1.8	52
6	Vegetation Indices for Discrimination of Soybean Areas: A New Approach. Agronomy Journal, 2017, 109, 1331-1343.	0.9	48
7	Soybean varieties discrimination using non-imaging hyperspectral sensor. Infrared Physics and Technology, 2018, 89, 338-350.	1.3	44
8	Soy Moratorium in Mato Grosso: Deforestation undermines the agreement. Land Use Policy, 2018, 71, 540-542.	2.5	44
9	Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. International Journal of Climatology, 2021, 41, E2111.	1.5	43
10	Remote sensing for updating the boundaries between the brazilian Cerrado-Amazonia biomes. Environmental Science and Policy, 2019, 101, 383-392.	2.4	38
11	Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sensing, 2022, 14, 1911.	1.8	36
12	The forests in the indigenous lands in Brazil in peril. Land Use Policy, 2020, 90, 104258.	2.5	31
13	Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform. Computers and Electronics in Agriculture, 2020, 169, 105194.	3.7	29
14	Analysis of the impact on vegetation caused by abrupt deforestation via orbital sensor in the environmental disaster of Mariana, Brazil. Land Use Policy, 2018, 76, 10-20.	2.5	28
15	Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, Brazil. Land Use Policy, 2019, 87, 104026.	2.5	28
16	Fire foci related to rainfall and biomes of the state of Mato Grosso do Sul, Brazil. Agricultural and Forest Meteorology, 2020, 282-283, 107861.	1.9	28
17	Analysis of the Occurrence of Wet and Drought Periods Using Standardized Precipitation Index in Mato Grosso do Sul State, Brazil. Journal of Agronomy, 2015, 14, 80-86.	0.4	28
18	Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies. Archives of Agronomy and Soil Science, 2018, 64, 682-695.	1.3	27

Carlos Antonio da Silva

#	Article	IF	CITATIONS
19	Confronting <scp>CHIRPS</scp> dataset and in situ stations in the detection of wet and drought conditions in the Brazilian Midwest. International Journal of Climatology, 2021, 41, 4478-4493.	1.5	25
20	Statistical normality and homogeneity of a 71-year rainfall dataset for the state of Rio de Janeiro—Brazil. Theoretical and Applied Climatology, 2020, 141, 1573-1591.	1.3	24
21	Fire dynamics in extreme climatic events in western amazon. Environmental Development, 2019, 32, 100450.	1.8	22
22	Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data. Remote Sensing, 2021, 13, 4632.	1.8	22
23	Path Analysis and Correlation of Two Genetic Classes of Maize (Zea mays L.). Journal of Agronomy, 2013, 13, 23-28.	0.4	20
24	UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sensing Applications: Society and Environment, 2020, 18, 100318.	0.8	19
25	Organic matter and sand estimates by spectroradiometry: Strategies for the development of models with applicability at a local scale. Geoderma, 2019, 340, 224-233.	2.3	16
26	Understanding the combining ability for physiological traits in soybean. PLoS ONE, 2019, 14, e0226523.	1.1	15
27	Non-parametric tests and multivariate analysis applied to reported dengue cases in Brazil. Environmental Monitoring and Assessment, 2019, 191, 473.	1.3	14
28	Mathematical modeling and use of orbital products in the environmental degradation of the Araripe Forest in the Brazilian Northeast. Modeling Earth Systems and Environment, 2019, 5, 1429-1441.	1.9	14
29	Rainfall in Brazilian Northeast via in situ data and CHELSA product: mapping, trends, and socio-environmental implications. Environmental Monitoring and Assessment, 2021, 193, 263.	1.3	14
30	Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environmental Development, 2021, 39, 100648.	1.8	14
31	Discriminação de áreas de soja por meio de imagens EVI/MODIS e análise baseada em geo-objeto. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 44-53.	0.4	14
32	Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sensing, 2022, 14, 338.	1.8	14
33	Spectral trend of vegetation with rainfall in events of El Niño-Southern Oscillation for Atlantic Forest biome, Brazil. Environmental Monitoring and Assessment, 2018, 190, 688.	1.3	13
34	Achieving lowâ€carbon cattle ranching in the Amazon: â€~Pasture sudden death' as a window of opportunity. Land Degradation and Development, 2018, 29, 3535-3543.	1.8	13
35	Sugarcane: Brazilian public policies threaten the Amazon and Pantanal biomes. Perspectives in Ecology and Conservation, 2020, 18, 210-212.	1.0	13
36	Towards user-adaptive remote sensing: Knowledge-driven automatic classification of Sentinel-2 time series. Remote Sensing of Environment, 2021, 264, 112615.	4.6	12

#	Article	IF	CITATIONS
37	Eucalyptus growth recognition using machine learning methods and spectral variables. Forest Ecology and Management, 2021, 497, 119496.	1.4	12
38	Carbon dioxide spatial variability and dynamics for contrasting land uses in central Brazil agricultural frontier from remote sensing data. Journal of South American Earth Sciences, 2022, 116, 103809.	0.6	12
39	Capitalizing on opportunities provided by pasture sudden death to enhance livestock sustainable management in Brazilian Amazonia. Environmental Development, 2020, 33, 100499.	1.8	11
40	High-throughput phenotyping of two plant-size traits of Eucalyptus species using neural networks. Journal of Forestry Research, 2022, 33, 591-599.	1.7	11
41	Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil. Sustainability, 2022, 14, 6935.	1.6	11
42	Object-based image analysis supported by data mining to discriminate large areas of soybean. International Journal of Digital Earth, 2019, 12, 270-292.	1.6	10
43	Fire regime in Southern Brazil driven by atmospheric variation and vegetation cover. Agricultural and Forest Meteorology, 2020, 295, 108194.	1.9	10
44	Temporal record and spatial distribution of fire foci in State of Minas Gerais, Brazil. Journal of Environmental Management, 2021, 280, 111707.	3.8	10
45	Dependência espacial dos atributos fÃsicos de três classes de solos cultivados com cana-de-açúcar sob colheita mecanizada. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 940-949.	0.4	10
46	High-throughput phenotyping allows the selection of soybean genotypes for earliness and high grain yield. Plant Methods, 2022, 18, 13.	1.9	10
47	The paradoxical situation of the white-lipped peccary (Tayassu pecari) in the state of Mato Grosso, Brazil. Perspectives in Ecology and Conservation, 2019, 17, 36-39.	1.0	9
48	Fire foci dynamics and their relationship with socioenvironmental factors and meteorological systems in the state of Alagoas, Northeast Brazil. Environmental Monitoring and Assessment, 2020, 192, 654.	1.3	9
49	Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning. Forests, 2021, 12, 582.	0.9	9
50	NMDI application for monitoring different vegetation covers in the Atlantic Forest biome, Brazil. Weather and Climate Extremes, 2021, 33, 100329.	1.6	9
51	Soil Mapping by Laboratory and Orbital Spectral Sensing Compared with a Traditional Method in a Detailed Level. Journal of Agronomy, 2014, 13, 100-109.	0.4	9
52	Spatial variability of soil physical properties in two management systems in sugarcane crop. Engenharia Agricola, 2012, 32, 60-68.	0.2	8
53	Disordered conversion of vegetation committees connectivity between forest fragments in the Brazilian Legal Amazon. Applied Geography, 2019, 111, 102082.	1.7	8
54	Past and future assessment of vegetation activity for the state of Amazonas-Brazil. Remote Sensing Applications: Society and Environment, 2020, 17, 100278.	0.8	8

#	Article	IF	CITATIONS
55	Estimating spray application rates in cotton using multispectral vegetation indices obtained using an unmanned aerial vehicle. Crop Protection, 2021, 140, 105407.	1.0	8
56	Soybean Cultivars Identification Using Remotely Sensed Image and Machine Learning Models. Sustainability, 2022, 14, 7125.	1.6	8
57	Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse. Anais Da Academia Brasileira De Ciencias, 2014, 86, 1999-2012.	0.3	7
58	Simulating multispectral MSI bandsets (Sentinel-2) from hyperspectral observations via spectroradiometer for identifying soybean cultivars. Remote Sensing Applications: Society and Environment, 2020, 19, 100328.	0.8	7
59	Genotype × trait biplot and canonical correlations for spectral and agronomic traits in corn. Agronomy Journal, 2021, 113, 1197-1204.	0.9	7
60	Is it possible to detect boron deficiency in eucalyptus using hyper and multispectral sensors?. Infrared Physics and Technology, 2021, 116, 103810.	1.3	7
61	Correlação entre produção de feijão e atributos fÃsicos de um Latossolo em Mato Grosso do Sul. Revista Ceres, 2013, 60, 772-784.	0.1	7
62	Using GNIR and RNIR Extracted by Digital Images to Detect Different Levels of Nitrogen in Corn. Journal of Agronomy, 2015, 14, 62-71.	0.4	7
63	Influence of the El <scp>Niño</scp> – <scp>Southern</scp> Oscillation and the sypnotic systems on the rainfall variability over the Brazilian Cerrado via Climate Hazard Group InfraRed Precipitation with Station data. International Journal of Climatology, 2022, 42, 3308-3322.	1.5	7
64	Fire foci in South America: Impact and causes, fire hazard and future scenarios. Journal of South American Earth Sciences, 2021, 112, 103623.	0.6	7
65	Gross primary productivity in areas of different land cover in the western Brazilian Amazon. Remote Sensing Applications: Society and Environment, 2019, 16, 100259.	0.8	6
66	Agronomic performance and waterâ€use efficiency of F 3 soybean populations grown under contrasting base saturation. Journal of Agronomy and Crop Science, 2020, 206, 806-814.	1.7	6
67	Environmental dynamics of the JuruÃ; watershed in the Amazon. Environment, Development and Sustainability, 2021, 23, 6769-6785.	2.7	6
68	Evaluation of the MOD11A2 product for canopy temperature monitoring in the Brazilian Atlantic Forest. Environmental Monitoring and Assessment, 2021, 193, 45.	1.3	6
69	Agronomic Performance and Genetic Variability among Common Bean Genotypes in Savanna/Pantanal Ecotone. Journal of Agronomy, 2015, 14, 175-179.	0.4	6
70	Minimum Number of Measurements for Accurate Evaluation of Qualitative Traits in Urochloa brizantha. Journal of Agronomy, 2015, 14, 180-184.	0.4	6
71	Sample Dimension for Estimation of Biomass and Yield of Sunn (Crotalaria juncea L.) and Showy rattlebox (C. spectabilis Roth.). Journal of Agronomy, 2015, 14, 98-101.	0.4	6
72	Agricultural soybean and corn calendar based on moderate resolution satellite images for southern Brazil. Semina:Ciencias Agrarias, 2020, 41, 2419-2428.	0.1	6

#	Article	IF	CITATIONS
73	The influence of urban expansion in the socio-economic, demographic, and environmental indicators in the City of Arapiraca-Alagoas, Brazil. Remote Sensing Applications: Society and Environment, 2022, 25, 100662.	0.8	6
74	The "New Transamazonian Highway― BR-319 and Its Current Environmental Degradation. Sustainability, 2022, 14, 823.	1.6	6
75	Twenty-year impact of fire foci and its relationship with climate variables in Brazilian regions. Environmental Monitoring and Assessment, 2022, 194, 90.	1.3	6
76	Advance of soy commodity in the southern Amazonia with deforestation via PRODES and ImazonGeo: a moratorium-based approach. Scientific Reports, 2021, 11, 21792.	1.6	5
77	CO2Flux Model Assessment and Comparison between an Airborne Hyperspectral Sensor and Orbital Multispectral Imagery in Southern Amazonia. Sustainability, 2022, 14, 5458.	1.6	5
78	Spatial distribution of soil chemicals attributes in sugar cane crop area. African Journal of Agricultural Research Vol Pp, 2016, 11, 4886-4893.	0.2	4
79	Artificial Neural Networks and Data Mining Techniques for Summer Crop Discrimination: A New Approach. Canadian Journal of Remote Sensing, 2019, 45, 16-25.	1.1	4
80	Assessment of evapotranspiration estimates based on surface and satellite data and its relationship with El Niño–Southern Oscillation in the Rio de Janeiro State. Environmental Monitoring and Assessment, 2020, 192, 449.	1.3	4
81	Physiological response and earliness of soybean genotypes to soil base saturation conditions. Journal of Agronomy and Crop Science, 2021, 207, 163-169.	1.7	4
82	Importance of legislation for maintaining forests on private properties in the Brazilian Cerrado. Environment, Development and Sustainability, 2022, 24, 3356-3370.	2.7	4
83	Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the Western Brazilian Amazon. Remote Sensing Applications: Society and Environment, 2021, 23, 100531.	0.8	4
84	UAV-based multispectral sensor to measure variations in corn as a function of nitrogen topdressing. Remote Sensing Applications: Society and Environment, 2021, 23, 100534.	0.8	4
85	RESPOSTA DE HÃBRIDOS DE MILHO A DIFERENTES ESPAÇAMENTOS ENTRE LINHAS. Nucleus, 2012, 9, 131-139.	0.1	4
86	Structural equation modelling and factor analysis of the relationship between agronomic traits and vegetation indices in corn. Euphytica, 2022, 218, 1.	0.6	4
87	Comparison of mapping soybean areas in Brazil through perceptron neural networks and vegetation indices. African Journal of Agricultural Research Vol Pp, 2016, 11, 4413-4424.	0.2	3
88	Improving the validation of ecological niche models with remote sensing analysis. Ecological Modelling, 2018, 380, 22-30.	1.2	3
89	Investigating the Characteristics and Predictability of Measured Wind Speed Data Over Rio de Janeiro, Brazil. Pure and Applied Geophysics, 2021, 178, 2333-2355.	0.8	3
90	Highâ€ŧhroughput phenotyping of soybean genotypes under base saturation stress conditions. Journal of Agronomy and Crop Science, 2021, 207, 814-822.	1.7	3

#	Article	IF	CITATIONS
91	Relationship between vegetation indices and agronomic performance of maize varieties under different nitrogen rates. Bioscience Journal, 2020, 36, .	0.4	3
92	Residual Activity of 2,4-D Amine on Soybean Plant Development. Journal of Agronomy, 2015, 14, 247-250.	0.4	3
93	Principal Component Analysis in Monitoring Soybean Fields of Brazil through the MODIS Sensor. Journal of Agronomy, 2015, 14, 72-79.	0.4	3
94	Mapeamento de áreas agrÃcolas na safra de verão a partir de imagens Landsat frente aos dados oficiais. Agro@mbiente on-line, 2017, 10, 287.	0.2	3
95	Probable monthly rainfall associated with distinct biomes of Mato Grosso do Sul state. Bioscience Journal, 0, , 747-753.	0.4	3
96	Fire risk associated with landscape changes, climatic events and remote sensing in the Atlantic Forest using ARIMA model. Remote Sensing Applications: Society and Environment, 2022, 26, 100761.	0.8	3
97	Spatially explicit modeling of land use and land cover in the State of Rio de Janeiro-Brazil. Remote Sensing Applications: Society and Environment, 2020, 18, 100303.	0.8	2
98	Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil. Environmental Monitoring and Assessment, 2021, 193, 606.	1.3	2
99	Analysis of environmental degradation in MaceiÃ ³ -Alagoas, Brazil via orbital sensors: A proposal for landscape intervention based on urban afforestation. Remote Sensing Applications: Society and Environment, 2021, 24, 100621.	0.8	2
100	Space-time variability of the Roncador river basin in the change of land use and cover and its correlation with climatic variables. Bioscience Journal, 2019, 35, .	0.4	2
101	Relations between the yield of bean (Phaseolus vulgaris L.) and chemical attributes of an Acrustox under no-tillage. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	1.7	2
102	Correlations and Genetic Parameters Between Morphological Descriptors in Soybean. Journal of Agronomy, 2014, 13, 117-121.	0.4	2
103	Conversion of land use and cover in northwest Amazon (Brazil). Pesquisa Agropecuaria Tropical, 2014, 44, 230-237.	1.0	2
104	Relationships between Primary and Secondary Yield Components of a Maize Population after 13 Stratified Mass Selection Cycles. Journal of Agronomy, 2015, 15, 33-38.	0.4	2
105	Extraction of crop information through the spatiotemporal fusion of OLI and MODIS images. Geocarto International, 2022, 37, 8336-8360.	1.7	2
106	Identification of tillage for soybean crop by spectro-temporal variables, GEOBIA, and decision tree. Remote Sensing Applications: Society and Environment, 2020, 19, 100356.	0.8	1
107	Doses of phosphorus on initial development and forage production of cultivars of Panicum maximum. Bioscience Journal, 0, , 1537-1544.	0.4	1
108	Meteorological Systems Influences Rainfall in Seropédica Revista Brasileira De Geografia Fisica, 2019, 12, 2141-2151.	0.0	1

#	Article	IF	CITATIONS
109	Effect of Different Doses of Swine Biofertilizer in the Development and Production of Cultivars of Brachiaria brizantha. Journal of Agronomy, 2012, 12, 53-58.	0.4	1
110	Soybean base saturation stress: Selecting populations for multiple traits using multivariate statistics. Journal of Agronomy and Crop Science, 0, , .	1.7	1
111	Linear Model in the Estimate the Sunn (Crotalaria juncea L.) Leaf Area. Journal of Agronomy, 2016, 15, 83-87.	0.4	1
112	Influence of Seed Type on Forage Production of Panicum maximum Cultivars. Journal of Agronomy, 2016, 15, 136-141.	0.4	1
113	Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil. Bioscience Journal, 0, , 1010-1016.	0.4	1
114	Performance of CCCma and GFDL climate models using remote sensing and surface data for the state of Rio de Janeiro-Brazil. Remote Sensing Applications: Society and Environment, 2021, 21, 100446.	0.8	0
115	19-year remotely sensed data in the forecast of spectral models of the environment. International Journal of Digital Earth, 0, , 1-27.	1.6	0
116	Development of Cultivars Brachiaria brizantha in Ecotone Cerrado-pantanal under Different Periods. Journal of Agronomy, 2013, 12, 130-137.	0.4	0
117	Agronomic Performance of Upland Cotton Cultivars in Cerrado Depending on Row Spacing. Journal of Agronomy, 2016, 15, 147-150.	0.4	0
118	Changes in past global solar radiation based on climate models and remote sensing in the state of Rio de Janeiro, Brazil. Bioscience Journal, 0, , 1357-1364.	0.4	0
119	Selection of soybean genotypes for to Cerrado/Pantanal ecotone via REML/BLUP. Bioscience Journal, 0, , 933-940.	0.4	0
120	Evaluation of Rhizobia strains UFLA 02 100 and CIAT 899 in line LEP 02 11 of Phaseolus vulgaris L Bioscience Journal, 2019, 35, .	0.4	0
121	In situ remote sensing as a strategy to predict cotton seed yield. Bioscience Journal, 2019, 35, .	0.4	0
122	Phenotypic adaptability of cotton genotypes to the brazilian cerrado for yield and fiber quality. Bioscience Journal, 2020, 36, .	0.4	0
123	Genetic Gains With Selection for Yield and Soluble Solids Content in Cherry Tomato Hybrids. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 400-402.	0.5	0
124	Climatological Water Balance In The Municipality of Rio de Janeiro. Revista Brasileira De Geografia Fisica, 2020, 13, 2388.	0.0	0
125	Amazonian species evaluation using leaf-based spectroscopy data and dimensionality reduction approaches. Remote Sensing Applications: Society and Environment, 2022, 26, 100742.	0.8	0