Laura Dazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794627/publications.pdf Version: 2024-02-01

Ι ΛΙΙΦΑ ΠΑΖΖΙ

#	Article	IF	CITATIONS
1	Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 189-200.	4.3	15
2	Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration. Psychopharmacology, 2017, 234, 749-760.	3.1	8
3	Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake. Frontiers in Cellular Neuroscience, 2016, 10, 155.	3.7	9
4	Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors. Neuropsychopharmacology, 2016, 41, 1308-1318.	5.4	20
5	Involvement of the Cannabinoid CB1 Receptor in Modulation of Dopamine Output in the Prefrontal Cortex Associated with Food Restriction in Rats. PLoS ONE, 2014, 9, e92224.	2.5	21
6	Role of ionotropic glutamate receptors in the regulation of hippocampal norepinephrine output in vivo. Brain Research, 2011, 1386, 41-49.	2.2	8
7	Estrous Cycle-Dependent Changes in Basal and Ethanol-Induced Activity of Cortical Dopaminergic Neurons in the Rat. Neuropsychopharmacology, 2007, 32, 892-901.	5.4	85
8	Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Research, 2007, 1179, 28-34.	2.2	273
9	Novel L-Dopa and Dopamine Prodrugs Containing a 2-Phenyl-imidazopyridine Moiety. Pharmaceutical Research, 2007, 24, 1309-1324.	3.5	39
10	Chronic administration of the SSRI fluvoxamine markedly and selectively reduces the sensitivity of cortical serotonergic neurons to footshock stress. European Neuropsychopharmacology, 2005, 15, 283-290.	0.7	17
11	Inhibition of stress-induced dopamine output in the rat prefrontal cortex by chronic treatment with olanzapine. Biological Psychiatry, 2004, 55, 477-483.	1.3	14
12	Antagonism of the stress-induced increase in cortical norepinephrine output by the selective norepinephrine reuptake inhibitor reboxetine. European Journal of Pharmacology, 2003, 476, 55-61.	3.5	21
13	Systemic, but not local, administration of cannabinoid CB1 receptor agonists modulate prefrontal cortical acetylcholine efflux in the rat. Synapse, 2003, 48, 178-183.	1.2	29
14	Molecular mechanisms of tolerance to and withdrawal of GABAA receptor modulators. European Neuropsychopharmacology, 2003, 13, 411-423.	0.7	38
15	Allopregnanolone Modulates the Action of Ethanol and Stress on the Activity of Mesocortical Dopaminergic Neurons and HPA Axis. Frontiers in Neuroscience, 2003, , .	0.0	0
16	Inhibition by venlafaxine of the increase in norepinephrine output in rat prefrontal cortex elicited by acute stress or by the anxiogenic drug FG 7142. Journal of Psychopharmacology, 2002, 16, 125-131.	4.0	27
17	Prevention of the stress-induced increase in the concentration of neuroactive steroids in rat brain by long-term administration of mirtazapine but not of fluoxetine. Journal of Psychopharmacology, 2002, 16, 133-138.	4.0	34
18	Synthesis and Pharmacological Evaluation of 1-[(1,2-Diphenyl-1H-4-imidazolyl)methyl]-4-phenylpiperazines with Clozapine-Like Mixed Activities at Dopamine D2, Serotonin, and GABAAReceptors. Journal of Medicinal Chemistry, 2002, 45, 4655-4668.	6.4	27

Laura Dazzi

#	Article	IF	CITATIONS
19	A rapid method for obtaining finasteride, a 5α-reductase inhibitor, from commercial tablets. Brain Research Protocols, 2002, 9, 130-134.	1.6	14
20	Depletion of cortical allopregnanolone potentiates stress-induced increase in cortical dopamine output. Brain Research, 2002, 932, 135-139.	2.2	47
21	Progesterone enhances ethanol-induced modulation of mesocortical dopamine neurons: antagonism by finasteride. Journal of Neurochemistry, 2002, 83, 1103-1109.	3.9	46
22	Chronic treatment with imipramine or mirtazapine antagonizes stress- and FG7142-induced increase in cortical norepinephrine output in freely moving rats. Synapse, 2002, 43, 70-77.	1.2	46
23	Prevention of the stress-induced increase in frontal cortical dopamine efflux of freely moving rats by long-term treatment with antidepressant drugs. European Neuropsychopharmacology, 2001, 11, 343-349.	0.7	31
24	Opposite effects of short- versus long-term administration of fluoxetine on the concentrations of neuroactive steroids in rat plasma and brain. Psychopharmacology, 2001, 158, 48-54.	3.1	63
25	Inhibition of stress- or anxiogenic-drug-induced increases in dopamine release in the rat prefrontal cortex by long-term treatment with antidepressant drugs. Journal of Neurochemistry, 2001, 76, 1212-1220.	3.9	44
26	Characterization of the electrophysiological and pharmacological effects of 4-iodo-2,6-diisopropylphenol, a propofol analogue devoid of sedative-anaesthetic properties. British Journal of Pharmacology, 1999, 126, 1444-1454.	5.4	32
27	Reversal by flunarizine of the decrease in hippocampal acetylcholine release in pentylenetetrazole-kindled rats. Biochemical Pharmacology, 1999, 58, 145-149.	4.4	7
28	Rapid increase in basal acetylcholine release in the hippocampus of freely moving rats induced by withdrawal from long-term ethanol intoxication. Brain Research, 1998, 784, 347-350.	2.2	26
29	Antagonism by Abecarnil of Enhanced Acetylcholine Release in the Rat Brain During Anticipation But Not Consumption of Food. Pharmacology Biochemistry and Behavior, 1998, 59, 657-662.	2.9	23
30	Reduced prefrontal cortical dopamine, but not acetylcholine, release in vivo after repeated, intermittent phencyclidine administration to rats. Neuroscience Letters, 1998, 258, 175-178.	2.1	55
31	Reversal of a selective decrease in hippocampal acetylcholine release, but not of the persistence of kindling, after discontinuation of long-term pentylenetetrazol administration in rats. Brain Research, 1997, 751, 175-179.	2.2	6
32	Enhancement of basal and pentylenetetrazol (PTZ)-stimulated dopamine release in the brain of freely moving rats by PTZ-induced kindling. Synapse, 1997, 26, 351-358.	1.2	38
33	Effect of Pentylenetetrazoleâ€Induced Kindling on Acetylcholine Release in the Hippocampus of Freely Moving Rats. Journal of Neurochemistry, 1997, 68, 313-318.	3.9	40
34	Inhibition by the neurosteroid allopregnanolone of basal and stress-induced acetylcholine release in the brain of freely moving rats. Brain Research, 1996, 710, 275-280.	2.2	42
35	Inhibition of basal and stress-induced dopamine release in the cerebral cortex and nucleus accumbens of freely moving rats by the neurosteroid allopregnanolone. Journal of Psychopharmacology, 1996, 10, 266-272.	4.0	72
36	Effects of propofol, pentobarbital and alphaxalone on binding in rat cerebral cortex. European Journal of Pharmacology, 1994, 267, 207-213.	2.6	13

Laura Dazzi

#	Article	IF	CITATIONS
37	The benzodiazepine receptor antagonist flumazenil increases acetylcholine release in rat hippocampus. Brain Research, 1994, 647, 167-171.	2.2	40
38	Differential effects of abecarnil on basal release of acetylcholine and dopamine in the rat brain. European Journal of Pharmacology, 1994, 261, 205-208.	3.5	16
39	Does dopamine exert a tonic inhibitory control on the release of striatal acetylcholine in vivo?. European Journal of Pharmacology, 1994, 251, 271-279.	3.5	22
40	Neuroleptics cause stimulation of dopamine D1 receptors and their desensitization after chronic treatment. European Journal of Pharmacology, 1994, 264, 55-60.	3.5	18
41	Inhibition of hippocampal acetylcholine release by benzodiazepines: antagonism by flumazenil. European Journal of Pharmacology, 1993, 238, 135-137.	3.5	47