Henrik Balslev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794467/publications.pdf

Version: 2024-02-01

		50170	62479
173	7,806	46	80
papers	citations	h-index	g-index
179	179	179	8292
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Phylogenomic relationships and historical biogeography in the South American vegetable ivory palms (Phytelepheae). Molecular Phylogenetics and Evolution, 2022, 166, 107314.	1.2	3
2	Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chemistry, 2022, 372, 131273.	4.2	11
3	Linking high diversification rates of rapidly growing Amazonian plants to geophysical landscape transformations promoted by Andean uplift. Botanical Journal of the Linnean Society, 2022, 199, 36-52.	0.8	3
4	Palm functional trait responses to local environmental factors in the Colombian Amazon. Journal of Tropical Ecology, 2022, 38, 39-47.	0.5	3
5	Ethnobotany and Ecosystem Services in a Tidal Forest in Thailand. Sustainability, 2022, 14, 6322.	1.6	O
6	Hmong Medicinal Plant Knowledge Transmission and Retention in Social Modernity. Human Ecology, 2022, 50, 419-433.	0.7	1
7	Genomic and niche divergence in an Amazonian palm species complex. Botanical Journal of the Linnean Society, 2021, 197, 498-512.	0.8	8
8	Six new species of Maesa (Primulaceae) from Papua New Guinea . Phytotaxa, 2021, 505, 245-261.	0.1	3
9	Medicinal Plants Used for Treating Mild Covid-19 Symptoms Among Thai Karen and Hmong. Frontiers in Pharmacology, 2021, 12, 699897.	1.6	10
10	Palm Functional Traits, Soil Fertility and Hydrology Relationships in Western Amazonia. Frontiers in Forests and Global Change, 2021, 4, .	1.0	3
11	Revealing floristic variation and map uncertainties for different plant groups in western Amazonia. Journal of Vegetation Science, 2021, 32, e13081.	1.1	4
12	Prioritization of Loita Maasai medicinal plants for conservation. Biodiversity and Conservation, 2021, 30, 761-780.	1.2	1
13	Pleistocene climatic fluctuations promoted alternative evolutionary histories in <i>Phytelephas aequatorialis</i> , an endemic palm from western Ecuador. Journal of Biogeography, 2021, 48, 1023-1037.	1.4	8
14	Edaphic heterogeneity and the evolutionary trajectory of Amazonian plant communities. Ecology and Evolution, 2021, 11, 17672-17685.	0.8	1
15	Ethnomedicinal plants of the Loita Maasai of Kenya. Environment, Development and Sustainability, 2020, 22, 2569-2589.	2.7	26
16	Medicinal Plants of the Maasai of Kenya: A Review. Plants, 2020, 9, 44.	1.6	61
17	Using ICPC-2 Standard to Identify Thai Zingiberaceae of Pharmacological Interest. Plants, 2020, 9, 906.	1.6	4
18	Medicinal Plants for Treating Musculoskeletal Disorders among Karen in Thailand. Plants, 2020, 9, 811.	1.6	6

#	Article	IF	Citations
19	Post-Dispersal Seed Removal in a Large-Seeded Palm by Frugivore Mammals in Western Ecuador. Tropical Conservation Science, 2020, 13, 194008292094704.	0.6	5
20	Ethnomedicinal Knowledge of Traditional Healers in Roi Et, Thailand. Plants, 2020, 9, 1177.	1.6	13
21	Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand. Foods, 2020, 9, 1748.	1.9	16
22	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	1.6	53
23	Anti-Infectious Plants of the Thai Karen: A Meta-Analysis. Antibiotics, 2020, 9, 298.	1.5	8
24	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62
25	Ethnomedicinal Plant Knowledge of the Karen in Thailand. Plants, 2020, 9, 813.	1.6	11
26	Traditional knowledge of wild food plants of Thai Karen and Lawa (Thailand). Genetic Resources and Crop Evolution, 2020, 67, 1277-1299.	0.8	27
27	Revision of Otoba (Myristicaceae) . Phytotaxa, 2020, 441, 143-175.	0.1	4
28	<p>A synopsis of Lasianthus (Lasiantheae, Rubiaceae) in Thailand and two additionalÂnew species</p> . Phytotaxa, 2020, 439, 1-38.	0.1	2
29	Targeted Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical Palm Tribe Geonomateae. Frontiers in Plant Science, 2019, 10, 864.	1.7	40
30	Palm community transects and soil properties in western Amazonia. Ecology, 2019, 100, e02841.	1.5	8
31	Diversidad de comunidades de palmas en el Chocó biogeográfico y su relación con la precipitación. Caldasia, 2019, 41, 358-369.	0.1	4
32	Fine-Scale Plant Richness Mapping of the Andean P \tilde{A}_i ramo According to Macroclimate. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	12
33	PalmTraits 1.0, a species-level functional trait database of palms worldwide. Scientific Data, 2019, 6, 178.	2.4	51
34	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	1.6	28
35	Important Medicinal Plant Families in Thailand. Frontiers in Pharmacology, 2019, 10, 1125.	1.6	19
36	Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities. Annals of Botany, 2019, 123, 641-655.	1.4	23

#	Article	IF	CITATIONS
37	Cross-cultural Comparison of Medicinal Plants Used to Treat Infections in Northern Thailand. Economic Botany, 2019, 73, 86-95.	0.8	7
38	A Review of the Economic Botany of Sesbania (Leguminosae). Botanical Review, The, 2019, 85, 185-251.	1.7	17
39	Medicinal plants in homegardens of four ethnic groups in Thailand. Journal of Ethnopharmacology, 2019, 239, 111927.	2.0	29
40	Could coastal plants in western Amazonia be relicts of past marine incursions?. Journal of Biogeography, 2019, 46, 1749-1759.	1.4	26
41	Sustainability of the Loita Maasai Childrens' Ethnomedicinal Knowledge. Sustainability, 2019, 11, 5530.	1.6	59
42	Exotic Plants Used by the Hmong in Thailand. Plants, 2019, 8, 500.	1.6	9
43	Traditional Uses of Leguminosae among the Karen in Thailand. Plants, 2019, 8, 600.	1.6	23
44	Use of Medicinal Plants Among Thai Ethnic Groups: A Comparison. Economic Botany, 2019, 73, 64-75.	0.8	22
45	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	1.6	113
46	Karen Homegardens: Characteristics, Functions, and Species Diversity. Economic Botany, 2018, 72, 1-19.	0.8	25
47	Ethnomedicinal plant diversity in Thailand. Journal of Ethnopharmacology, 2018, 214, 90-98.	2.0	69
48	Endemism and conservation of Amazon palms. Biodiversity and Conservation, 2018, 27, 765-784.	1.2	14
49	Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. Journal of Biogeography, 2018, 45, 190-200.	1.4	81
50	Palm species richness, latitudinal gradients, sampling effort, and deforestation in the Amazon region. Acta Botanica Brasilica, 2018, 32, 527-539.	0.8	11
51	Genetic structuring in a Neotropical palm analyzed through an Andean orogenesisâ€scenario. Ecology and Evolution, 2018, 8, 8030-8042.	0.8	10
52	Taxonomic revision, distribution and ecology of <i>Wendlandiella</i> (Arecaceae: Arecoideae:) Tj ETQq0 0 0 rgB	T /Oyerlock	≀ 10 Tf 50 142
53	Thai Ethnomedicinal Plants Used for Diabetes Treatment. OBM Integrative and Complementary Medicine, 2018, 3, 1-1.	0.1	13
54	Phytoregionalisation of the Andean páramo. PeerJ, 2018, 6, e4786.	0.9	41

#	Article	IF	CITATIONS
55	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	2.1	143
56	Fundamental species traits explain provisioning services of tropical American palms. Nature Plants, 2017, 3, 16220.	4.7	59
57	Weed Diversity and Uses: a Case Study from Tea Plantations in Northern Thailand. Economic Botany, 2017, 71, 147-159.	0.8	13
58	<p align="center" class="Body">Crotalaria L. (Fabaceae: Faboideae) in continental Southeast Asia. Phytotaxa, 2017, 320, 1.</p>	0.1	8
59	Modelling responses of western Amazonian palms to soil nutrients. Journal of Ecology, 2017, 105, 367-381.	1.9	40
60	Stability in a changing world – palm community dynamics in the hyperdiverse western Amazon over 17Âyears. Global Change Biology, 2017, 23, 1232-1239.	4.2	8
61	Availability, diversification and versatility explain human selection of introduced plants in Ecuadorian traditional medicine. PLoS ONE, 2017, 12, e0184369.	1.1	41
62	Phylogenetics of Iriarteeae (Arecaceae), cross-Andean disjunctions and convergence of clustered infructescence morphology in <i>Wettinia</i> Botanical Journal of the Linnean Society, 2016, 182, 272-286.	0.8	18
63	Local knowledge about palms (Arecaceae) among children in Bolivia. Botanical Journal of the Linnean Society, 2016, 182, 505-516.	0.8	6
64	Medicinal palms (Arecaceae) in Madagascar-undocumented or underutilized?. Botanical Journal of the Linnean Society, 2016, 182, 517-525.	0.8	4
65	Demography of <i>Oenocarpus bataua</i> and implications for sustainable harvest of its fruit in western Amazon. Population Ecology, 2016, 58, 463-476.	0.7	13
66	Low genetic variation and high differentiation across sky island populations of Lupinus alopecuroides (Fabaceae) in the northern Andes. Alpine Botany, 2016, 126, 135-142.	1.1	49
67	Amerindian and Afro-American Perceptions of Their Traditional Knowledge in the ${\sf Choc} \tilde{\sf A}^3$ Biodiversity Hotspot. Economic Botany, 2016, 70, 160-175.	0.8	14
68	The demography of a dominant Amazon liana species exhibits little environmental sensitivity. Journal of Tropical Ecology, 2016, 32, 79-82.	0.5	3
69	A compositional turnover zone of biogeographical magnitude within lowland Amazonia. Journal of Biogeography, 2016, 43, 2400-2411.	1.4	50
70	Palms - emblems of tropical forests. Botanical Journal of the Linnean Society, 2016, 182, 195-200.	0.8	18
71	Woody Plant Diversity in Urban Homegardens in Northern Thailand. Economic Botany, 2016, 70, 285-302.	0.8	23
72	Global-change vulnerability of a key plant resource, the African palms. Scientific Reports, 2015, 5, 12611.	1.6	34

#	Article	IF	CITATIONS
73	Management of the palm Astrocaryum chambira Burret (Arecaceae) in northwest Amazon. Acta Botanica Brasilica, 2015, 29, 45-57.	0.8	14
74	SE Asian Palms for Agroforestry and Home Gardens. Forests, 2015, 6, 4607-4616.	0.9	16
75	Effects of Warming and Drought on the Vegetation and Plant Diversity in the Amazon Basin. Botanical Review, The, 2015, 81, 42-69.	1.7	37
76	Human impact on tropical-alpine plant diversity in the northern Andes. Biodiversity and Conservation, 2015, 24, 2673-2683.	1.2	53
77	Ash \tilde{A}_i ninka Palm Management and Domestication in the Peruvian Amazon. Human Ecology, 2015, 43, 451-466.	0.7	13
78	African palm ethno-medicine. Journal of Ethnopharmacology, 2015, 165, 227-237.	2.0	36
79	Ethnomedicinal survey and in vitro anti-plasmodial activity of the palm Borassus aethiopum Mart. Journal of Ethnopharmacology, 2015, 175, 356-369.	2.0	11
80	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	4.7	122
81	Ethnobotanical Knowledge Is Vastly Under-Documented in Northwestern South America. PLoS ONE, 2014, 9, e85794.	1.1	57
82	Productivity and management of (i) Phytelephas aequatorialis (i) ((i) Arecaceae (i)) in Ecuador. Annals of Applied Biology, 2014, 164, 257-269.	1.3	14
83	Karen and Lawa medicinal plant use: Uniformity or ethnic divergence?. Journal of Ethnopharmacology, 2014, 151, 517-527.	2.0	35
84	Geospatial patterns in traditional knowledge serve in assessing intellectual property rights and benefit-sharing in northwest South America. Journal of Ethnopharmacology, 2014, 158, 58-65.	2.0	19
85	New categories for traditional medicine in the Economic Botany Data Collection Standard. Journal of Ethnopharmacology, 2014, 155, 1388-1392.	2.0	36
86	Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. Forest Ecology and Management, 2014, 334, 28-42.	1.4	34
87	Phylogenetic structure of a palm community in the central Amazon: changes along a hydro-edaphic gradient. Plant Ecology, 2014, 215, 1173-1185.	0.7	4
88	Ritual uses of palms in traditional medicine in sub-Saharan Africa: a review. Journal of Ethnobiology and Ethnomedicine, 2014, 10, 60.	1.1	50
89	Medicinal plants from swidden fallows and sacred forest of the Karen and the Lawa in Thailand. Journal of Ethnobiology and Ethnomedicine, 2013, 9, 44.	1.1	21
90	Spatial distribution and environmental preferences of 10 economically important forest palms in western South America. Forest Ecology and Management, 2013, 307, 284-292.	1.4	25

#	Article	IF	CITATIONS
91	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	6.0	873
92	Separating environmental and geographical determinants of phylogenetic community structure in Amazonian palms (Arecaceae). Botanical Journal of the Linnean Society, 2013, 171, 244-259.	0.8	36
93	Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 2013, 3, 1164.	1.6	66
94	Multimillionâ€year climatic effects on palm species diversity in Africa. Ecology, 2013, 94, 2426-2435.	1.5	44
95	Floral structure and organogenesis of the wax palm <i>Ceroxylon ceriferum</i> (Arecaceae;) Tj ETQq1 1 0.784314	1 rgBT /Ov	eglock 10 Ti
96	Socratea Karstenii F. W. Stauffer & Salslev (Arecaceae), a New Species from Venezuela. Candollea, 2012, 67, 285.	0.1	1
97	Palm species richness, abundance and diversity in the Yucatan Peninsula, in a neotropical context. Nordic Journal of Botany, 2012, 30, 613-622.	0.2	6
98	Topographic separation of two sympatric palms in the central Amazon – does dispersal play a role?. Acta Oecologica, 2012, 39, 128-135.	0.5	9
99	Medicinal plants used in Hmong women's healthcare in northern Thailand. Journal of Ethnopharmacology, 2012, 139, 119-135.	2.0	55
100	A Biodiversity Informatics Approach to Ethnobotany: Meta-analysis of Plant Use Patterns in Ecuador. Ecology and Society, 2012, 17, .	1.0	17
101	Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7379-7384.	3.3	209
102	Plant Diversity in Hmong and Mien Homegardens in Northern Thailand. Economic Botany, 2012, 66, 192-206.	0.8	25
103	Environment versus dispersal in the assembly of western Amazonian palm communities. Journal of Biogeography, 2012, 39, 1318-1332.	1.4	61
104	Can phylogenetic signal, character displacement, or random phenotypic drift explain the morphological variation in the genus Geonoma (Arecaceae)?. Biological Journal of the Linnean Society, 2012, 106, 528-539.	0.7	31
105	Quaternary and preâ€Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 2012, 21, 909-921.	2.7	91
106	Light Converts Endosymbiotic Fungus to Pathogen, Influencing Seedling Survival and Niche-Space Filling of a Common Tropical Tree, Iriartea deltoidea. PLoS ONE, 2011, 6, e16386.	1.1	136
107	Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 2011, 108, 1391-1416.	1.4	234
108	Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences. Taxon, 2011, 60, 485-498.	0.4	44

#	Article	IF	CITATIONS
109	Local and regional palm (Arecaceae) species richness patterns and their cross-scale determinants in the western Amazon. Journal of Ecology, 2011, 99, 1001-1015.	1.9	41
110	A Dated Phylogeny Complements Macroecological Analysis to Explain the Diversity Patterns in Geonoma (Arecaceae). Biotropica, 2011, 43, 324-334.	0.8	32
111	Tropical and Temperate: Evolutionary History of $P\tilde{A}_i$ ramo Flora. Botanical Review, The, 2011, 77, 71-108.	1.7	92
112	Palm Harvest Impacts in North-Western South America. Botanical Review, The, 2011, 77, 370-380.	1.7	22
113	Species Diversity and Growth Forms in Tropical American Palm Communities. Botanical Review, The, 2011, 77, 381-425.	1.7	60
114	Disturbance and Resilience in Tropical American Palm Populations and Communities. Botanical Review, The, 2011, 77, 426-461.	1.7	43
115	Palm Uses in Northwestern South America: A Quantitative Review. Botanical Review, The, 2011, 77, 462-570.	1.7	100
116	Palm Management in South America. Botanical Review, The, 2011, 77, 607-646.	1.7	64
117	Testing the Water–Energy Theory on American Palms (Arecaceae) Using Geographically Weighted Regression. PLoS ONE, 2011, 6, e27027.	1.1	34
118	Traditional Knowledge, Use, and Management of Aphandra natalia (Arecaceae) in Amazonian Peru. Economic Botany, 2010, 64, 55-67.	0.8	19
119	Determinants of palm species distributions across Africa: the relative roles of climate, nonâ€climatic environmental factors, and spatial constraints. Ecography, 2010, 33, 380-391.	2.1	86
120	Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodiversity and Conservation, 2009, 18, 219-228.	1.2	39
121	Contrasting palm species and use diversity in the Yucatan Peninsula and the Ecuadorian Amazon. Biodiversity and Conservation, 2009, 18, 2837-2853.	1.2	19
122	Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark. Plant Ecology, 2009, 201, 221-234.	0.7	26
123	Management and use of Nelumbo nucifera Gaertn. in Thai wetlands. Wetlands Ecology and Management, 2009, 17, 279-289.	0.7	20
124	American palm ethnomedicine: A meta-analysis. Journal of Ethnobiology and Ethnomedicine, 2009, 5, 43.	1.1	61
125	Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. Journal of Ethnopharmacology, 2009, 123, 335-342.	2.0	278
126	Commonness of Amazonian palm (Arecaceae) species: Cross-scale links and potential determinants. Acta Oecologica, 2009, 35, 554-562.	0.5	28

#	Article	IF	Citations
127	A synopsis of Thai Nymphaeaceae. Nordic Journal of Botany, 2009, 27, 97-114.	0.2	14
128	Impacts of 21st century climate changes on flora and vegetation in Denmark. IOP Conference Series: Earth and Environmental Science, 2009, 8, 012015.	0.2	4
129	New species of Geonoma (Palmae) from Ecuador. Brittonia, 2008, 60, 190-201.	0.8	3
130	To what extent does Tobler's 1st law of geography apply to macroecology? A case study using American palms (Arecaceae). BMC Ecology, 2008, 8, 11.	3.0	44
131	High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography, 2008, 35, 394-406.	1.4	105
132	Cloud frequency correlates to plant species composition in the high Andes of Ecuador. Basic and Applied Ecology, 2008, 9, 504-513.	1.2	24
133	A comparative study on medicinal plants used in Akha's traditional medicine in China and Thailand, cultural coherence or ecological divergence?. Journal of Ethnopharmacology, 2008, 116, 508-517.	2.0	92
134	Light converts endosymbiotic fungus to pathogen, influencing seedling survival and host tree recruitment. Nature Precedings, 2008, , .	0.1	7
135	Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark. , 2008, , 221-234.		1
136	Geographic flora elements in the Ecuadorian superp \tilde{A}_i ramo. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 50-61.	0.6	26
137	Influence of diversity and road access on palm extraction at landscape scale in SE Ecuador. Biodiversity and Conservation, 2007, 16, 631-642.	1.2	25
138	Edge effects on palm diversity in rain forest fragments in western Ecuador. Biodiversity and Conservation, 2007, 16, 2201-2211.	1.2	20
139	Diversity of palm uses in the western Amazon. Biodiversity and Conservation, 2007, 16, 2771-2787.	1.2	75
140	Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Botanical Journal of the Linnean Society, 2006, 151, 113-125.	0.8	74
141	Edaphic and Floristic Variation within a 1-ha Plot of Lowland Amazonian Rain Forest1. Biotropica, 2006, 38, 468-478.	0.8	81
142	Using the useful: characteristics of used palms in south-eastern Ecuador. Environment, Development and Sustainability, 2006, 8, 495-506.	2.7	31
143	Geographical and environmental controls of palm beta diversity in paleo-riverine terrace forests in Amazonian Peru. Plant Ecology, 2006, 186, 161-176.	0.7	72
144	Palms in Indigenous and Settler Communities in Southeastern Ecuador: Farmers' Perceptions and Cultivation Practices. Agroforestry Systems, 2006, 67, 147-158.	0.9	25

#	Article	IF	CITATIONS
145	Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography, 2005, 14, 423-429.	2.7	101
146	Overstorey Control of Understorey Species Composition in a Near-natural Temperate Broadleaved Forest in Denmark. Plant Ecology, 2005, 181, 113-126.	0.7	45
147	Spatial distribution and environmental preferences of the piassaba palm Aphandra natalia (Arecaceae) along the Pastaza and Urituyacu rivers in Peru. Forest Ecology and Management, 2005, 213, 175-183.	1.4	39
148	Superp \tilde{A}_i ramo plant species diversity and phytogeography in Ecuador. Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 416-433.	0.6	55
149	Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 2004, 92, 214-229.	1.9	443
150	Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology, 2004, 92, 577-588.	1.9	156
151	Landscape diversity patterns and endemism of Araceae in Ecuador. Biodiversity and Conservation, 2004, 13, 1755-1779.	1.2	9
152	The influence of past landâ€use on understory plant distributions in a nearâ€natural deciduous forest in Denmark. Nordic Journal of Botany, 2003, 23, 69-81.	0.2	10
153	Culinary Herbs for Short-Season Gardeners. Economic Botany, 2002, 56, 95-95.	0.8	0
154	Two new species of Geonoma sect. Taenianthera (Arecaceae) from the western Amazon. Nordic Journal of Botany, 2001, 21, 341-347.	0.2	8
155	Two new Myristicaceae from Ecuador. Nordic Journal of Botany, 2001, 21, 561-566.	0.2	2
156	Traditional knowledge of Dypsis Fibrosa (Arecaceae) in Eastern Madagascar. Economic Botany, 2001, 55, 263-275.	0.8	45
157	Title is missing!. Biodiversity and Conservation, 2001, 10, 1579-1593.	1.2	30
158	Myristicaceae novelties from Ecuador. Nordic Journal of Botany, 2000, 20, 443-447.	0.2	4
159	Use and management of Totora (Schoenoplectus Californicus, Cyperaceae) in Ecuador. Economic Botany, 2000, 54, 82-89.	0.8	22
160	Vascular plant species count in a wet forest in the Choc \tilde{A}^3 area on the Pacific coast of Colombia. Biodiversity and Conservation, 1998, 7, 1563-1575.	1.2	49
161	Useful lianas of the Siona-Secoya Indians from Amazonian Ecuador. Economic Botany, 1995, 49, 269-275.	0.8	29
162	Ethnobotany of the fiber palmAstrocaryum chambira (Arecaceae) in Amazonian Ecuador. Economic Botany, 1995, 49, 309-319.	0.8	33

#	Article	IF	CITATIONS
163	Growth rates and mortality patterns of tropical lowland tree species and the relation to forest structure in Amazonian Ecuador. Journal of Tropical Ecology, 1994, 10, 151-166.	0.5	92
164	High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation, 1994, 3, 21-28.	1.2	322
165	Growth and mortality of trees in Amazonian tropical rain forest in Ecuador. Journal of Vegetation Science, 1994, 5, 77-86.	1.1	94
166	The composition and structure of a dry, semideciduous forest in western Ecuador. Nordic Journal of Botany, 1994, 14, 425-434.	0.2	17
167	Abundance and cover of ground herbs in an Amazonian rain forest. Journal of Vegetation Science, 1991, 2, 315-322.	1.1	101
168	Attalea colenda (Arecaceae), a potential lauric oil resource. Economic Botany, 1990, 44, 360-368.	0.8	8
169	A revision of Hyospathe (Arecaceae). Nordic Journal of Botany, 1989, 9, 189-202.	0.2	16
170	DISTRIBUTION PATTERNS OF ECUADOREAN PLANT SPECIES. Taxon, 1988, 37, 567-577.	0.4	51
171	A New Ammandra (Palmae) from Ecuador. Systematic Botany, 1987, 12, 501.	0.2	11
172	A Note on the Pollination of Phytelephas microcarpa (Palmae). Biotropica, 1987, 19, 191.	0.8	25
173	Intraspecific genetic consequences of Pleistocene climate change on Lupinus microphyllus (Fabaceae) in the Andes. Alpine Botany, 0 , 1 .	1.1	2