List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794329/publications.pdf Version: 2024-02-01

		145106	206121
210	3,645	33	51
papers	citations	h-index	g-index
212	212	212	2554
212	212	212	3554
all docs	docs citations	times ranked	citing authors

ROSALIA SEDNA

#	Article	IF	CITATIONS
1	Transparent high conductive Titanium oxynitride nanofilms obtained by nucleation control for sustainable optolectronics. Applied Surface Science, 2022, 574, 151631.	3.1	7
2	Nanosecond Laser Switching of Phaseâ€Change Random Metasurfaces with Tunable ONâ€State. Advanced Optical Materials, 2022, 10, 2101405.	3.6	4
3	Enhanced Light Absorption in Allâ€Polymer Biomimetic Photonic Structures by Nearâ€Zeroâ€Index Organic Matter. Advanced Functional Materials, 2022, 32, .	7.8	8
4	Pulsed laser deposition and structural evolution of BaF2 nanolayers in Eu-doped BaF2/Al2O3 layered optical nanocomposite thin films. Thin Solid Films, 2022, , 139298.	0.8	0
5	(Invited) Nanocrystalline Oxide-Based Luminescent Nanophotonic Structures. ECS Meeting Abstracts, 2022, MA2022-01, 1095-1095.	0.0	0
6	Form Birefringence in Resonant Transducers for the Selective Monitoring of VOCs under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 19148-19158.	4.0	1
7	Competition Effects during Femtosecond Laser Induced Element Redistribution in Ba- and La-Migration Based Laser Written Waveguides. Materials, 2021, 14, 3185.	1.3	3
8	Toward white light emission from plasmonic-luminescent hybrid nanostructures. Nanophotonics, 2021, 10, 3995-4007.	2.9	2
9	Bismuth-based gap-plasmon metasurfaces for visible photonics with volatile tuning potential. , 2021, , .		0
10	Optical properties of differing nanolayered structures of divalent europium doped barium fluoride thin films synthesized by pulsed laser deposition. Optical Materials, 2021, 122, 111796.	1.7	0
11	Selfâ€Assembled, 10 nmâ€Tailored, Near Infrared Plasmonic Metasurface Acting as Broadband Omnidirectional Polarizing Mirror. Advanced Optical Materials, 2020, 8, 2000321.	3.6	5
12	Photoluminescence and Stoichiometry Correlation in Nanocrystalline EuOx Thin Films: Tunable Color Emission. Journal of Physical Chemistry C, 2020, 124, 15434-15439.	1.5	12
13	Role of the La/K Compositional Ratio in the Properties of Waveguides Written by Fs-Laser Induced Element Redistribution in Phosphate-Based Glasses. Materials, 2020, 13, 1275.	1.3	6
14	Spectroscopic ellipsometry study of Cu2ZnSn(SxSe1-x)4 bulk polycrystals. Journal of Alloys and Compounds, 2020, 843, 156013.	2.8	2
15	Optical-Based Thickness Measurement of MoO3 Nanosheets. Nanomaterials, 2020, 10, 1272.	1.9	12
16	Deep UV laser induced periodic surface structures on silicon formed by self-organization of nanoparticles. Applied Surface Science, 2020, 520, 146307.	3.1	10
17	Active analog tuning of the phase of light in the visible regime by bismuth-based metamaterials. Nanophotonics, 2020, 9, 885-896.	2.9	9
18	(Invited) Oxide-Based Luminiscent and Active Nanophotonic Structures. ECS Meeting Abstracts, 2020, MA2020-01, 1083-1083.	0.0	0

#	Article	IF	CITATIONS
19	Tuning the period of femtosecond laser induced surface structures in steel: From angled incidence to quill writing. Applied Surface Science, 2019, 493, 948-955.	3.1	31
20	Ellipsometric characterization of Bi and Al2O3 coatings for plasmon excitation in an optical fiber sensor. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	2
21	Influence of the Zn plasma kinetics on the structural and optical properties of ZnO thin films grown by PLD. SN Applied Sciences, 2019, 1, 1.	1.5	10
22	Nanosecond laser-induced interference grating formation on silicon. Journal Physics D: Applied Physics, 2019, 52, 225302.	1.3	11
23	Tailoring metal-dielectric nanocomposite materials with ultrashort laser pulses for dichroic color control. Nanoscale, 2019, 11, 18779-18789.	2.8	16
24	Liquid switchable radial polarization converters made of sculptured thin films. Applied Surface Science, 2019, 475, 230-236.	3.1	3
25	Conformal covering and optical response of pulsed laser deposited bidimensional Ag nanoparticle arrays. Applied Surface Science, 2019, 473, 442-448.	3.1	2
26	Optical properties of bismuth nanostructures towards the ultrathin film regime. Optical Materials Express, 2019, 9, 2924.	1.6	17
27	Design and Production of Femtosecond Laser Writable Borate-based Glasses for Photonic Devices. , 2019, , .		Ο
28	Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals. Applied Physics Letters, 2018, 112, 161901.	1.5	6
29	Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators. Semiconductor Science and Technology, 2018, 33, 013001.	1.0	58
30	Selfâ€Assembled Nanostructured Photonicâ€Plasmonic Metasurfaces for Highâ€Resolution Optical Thermometry. Advanced Materials Interfaces, 2018, 5, 1800241.	1.9	9
31	Memristive behaviour of Si-Al oxynitride thin films: the role of oxygen and nitrogen vacancies in the electroforming process. Nanotechnology, 2018, 29, 235702.	1.3	11
32	Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission. Journal of Alloys and Compounds, 2018, 735, 2267-2274.	2.8	8
33	White Cathodoluminescence Emission from Euâ€Đoped SiAlON Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800260.	0.8	3
34	Imaging Ellipsometry Determination of the Refractive Index Contrast and Dispersion of Channel Waveguides Inscribed by fs‣aser Induced Ionâ€Migration. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800258.	0.8	6
35	Europium monoxide nanocrystalline thin films with high near-infrared transparency. Applied Surface Science, 2018, 456, 980-984.	3.1	12
36	Femtosecond laser writing of photonic devices in borate glasses compositionally designed to be laser writable. Optics Letters, 2018, 43, 2523.	1.7	17

#	Article	IF	CITATIONS
37	Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers. Nano Research, 2018, 11, 1399-1414.	5.8	12
38	Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity. Optics Express, 2018, 26, 34043.	1.7	24
39	(Invited) Light on EuOx Nanostrutured Films. ECS Meeting Abstracts, 2018, , .	0.0	0
40	Unveiling the Far Infrared-to-Ultraviolet Optical Properties of Bismuth for Applications in Plasmonics and Nanophotonics. Journal of Physical Chemistry C, 2017, 121, 3511-3521.	1.5	61
41	Multifunctional ZnO/Fe-O and graphene oxide nanocomposites: Enhancement of optical and magnetic properties. Journal of the European Ceramic Society, 2017, 37, 3747-3758.	2.8	8
42	SiGe layer thickness effect on the structural and optical properties of well-organized SiGe/SiO2multilayers. Nanotechnology, 2017, 28, 345701.	1.3	5
43	Structure-property relationships for Eu doped TiO ₂ thin films grown by a laser assisted technique from colloidal sols. RSC Advances, 2017, 7, 37643-37653.	1.7	32
44	Preparation and broadband white emission of Eu-doped thin films based on SiAlON. Journal of Luminescence, 2017, 191, 97-101.	1.5	10
45	Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics [Invited]. Optical Materials Express, 2017, 7, 2299.	1.6	74
46	Vapor and liquid optical monitoring with sculptured Bragg microcavities. Journal of Nanophotonics, 2017, 11, 1.	0.4	5
47	Ultraviolet-visible interband plasmonics with p-block elements. Optical Materials Express, 2016, 6, 2434.	1.6	28
48	Polaritonic-to-Plasmonic Transition in Optically Resonant Bismuth Nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters. IEEE Photonics Journal, 2016, 8, 1-11.	1.0	20
49	Modeling of the refractive index and composition of luminescent nanometric chlorinated-silicon nitride films with embedded Si-quantum dots. Journal of Applied Physics, 2016, 120, 145305.	1.1	6
50	Optical Tuning of Nanospheres Through Phase Transition: An Optical Nanocircuit Analysis. IEEE Photonics Technology Letters, 2016, 28, 2878-2881.	1.3	2
51	Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities. ACS Nano, 2016, 10, 1256-1264.	7.3	27
52	Wide band-gap tuning Cu2ZnSn1â^'xGexS4 single crystals: Optical and vibrational properties. Solar Energy Materials and Solar Cells, 2016, 158, 147-153.	3.0	44
53	Tuning Eu3+ emission in europium sesquioxide films by changing the crystalline phase. Applied Surface Science, 2016, 374, 71-76.	3.1	14
54	(Invited) Luminescent Rare-Earth Doped Thin Film Nanostructures As Building Blocks for Nanophotonic and Lighting Applications. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
55	Thermo-optical properties of Bi nanoparticles embedded in germanate glasses and alumina thin films. Ceramics International, 2015, 41, 8216-8222.	2.3	11
56	Rare Earth-Ion/Nanosilicon Ultrathin Layer: A Versatile Nanohybrid Light-Emitting Building Block for Active Optical Metamaterials. Journal of Physical Chemistry C, 2015, 119, 11800-11808.	1.5	3
57	All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 19558-19564.	1.5	28
58	Optical performance of thin films produced by the pulsed laser deposition of SiAlON and Er targets. Applied Surface Science, 2015, 336, 274-277.	3.1	6
59	Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films. Materials, 2014, 7, 3427-3434.	1.3	7
60	Potential of bismuth nanoparticles embedded in a glass matrix for spectral-selective thermo-optical devices. Applied Physics Letters, 2014, 105, 113102.	1.5	22
61	Size-controlled Ge nanostructures for enhanced Er^3+ light emission. Optics Letters, 2014, 39, 4691.	1.7	3
62	TiO ₂ /Eu ³⁺ Thin Films with High Photoluminescence Emission Prepared by Electrophoretic Deposition from Nanoparticulate Sols. European Journal of Inorganic Chemistry, 2014, 2014, 5152-5159.	1.0	14
63	Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals. Applied Physics Letters, 2014, 105, 061909.	1.5	26
64	Band-gap engineering of Cu 2 ZnSn 1â^' x Ge x S 4 single crystals and influence of the surface properties. Acta Materialia, 2014, 79, 181-187.	3.8	37
65	Evolution of the optical reflectivity of a monolayer of nanoparticles during its growth on a dielectric thin film. Applied Physics A: Materials Science and Processing, 2013, 110, 757-764.	1.1	4
66	A shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2013, 110, 585-590.	1.1	7
67	Optical studies of amorphous Ge nanostructures in Al2O3 produced by pulsed laser deposition. Thin Solid Films, 2013, 541, 92-96.	0.8	2
68	Spectroscopic ellipsometry study of Cu2ZnGeSe4 and Cu2ZnSiSe4 poly-crystals. Materials Chemistry and Physics, 2013, 141, 58-62.	2.0	43
69	Characterization of Cu2SnSe3 by spectroscopic ellipsometry. Thin Solid Films, 2013, 535, 384-386.	0.8	4
70	Electrophoretic Deposition of TiO ₂ /Er ³⁺ Nanoparticulate Sols. Journal of Physical Chemistry B, 2013, 117, 1556-1562.	1.2	17
71	Role of target conditioning on the thermo-optical response of bismuth nanostructures produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2013, 110, 863-867.	1.1	3
72	(Invited) Exploring the Potential of Si and Ge Amorphous Nanostructures for Photonic Applications. ECS Transactions, 2013, 53, 17-29.	0.3	0

#	Article	IF	CITATIONS
73	Nano Focus: Colloidal quantum dot films show RGB lasing. MRS Bulletin, 2012, 37, 626-627.	1.7	0
74	Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. Journal of Physical Chemistry C, 2012, 116, 20530-20539.	1.5	182
75	Determination of the dielectric function of MnIn2S4 single crystals by spectroscopic ellipsometry. Journal of Physics and Chemistry of Solids, 2012, 73, 720-723.	1.9	2
76	Er3+/Pr3+ co-doped fluorophoshate glass shows emission at 2.7 μm promising for solid-state laser development. MRS Bulletin, 2011, 36, 240-242.	1.7	0
77	Comparative study of tetragonal Cu2In7Se11.5 and trigonal CuIn5Se8 by spectroscopic ellipsometry. Materials Chemistry and Physics, 2011, 125, 77-81.	2.0	3
78	Thermo-optical response of layered Bi nanostructures produced by pulsed laser deposition. Applied Surface Science, 2011, 257, 5172-5174.	3.1	5
79	Enhanced photoluminescence of rare-earth doped films prepared by off-axis pulsed laser deposition. Applied Surface Science, 2011, 257, 5204-5207.	3.1	8
80	Si nanoparticle–Er3+ coupling through contact in as-deposited nanostructured films. Applied Physics Letters, 2011, 98, 151109.	1.5	8
81	Mesoporous Silica Nanoparticles Facilitate Antireflective Coating Applications. MRS Bulletin, 2010, 35, 112-112.	1.7	2
82	Broadband infrared emission of erbium–thulium-codoped calcium boroaluminate glasses. Applied Physics B: Lasers and Optics, 2010, 99, 263-270.	1.1	15
83	Enhanced photoluminescence response of Er3+–Si nanoparticle codoped Al2O3 films by controlled synthesis in the nanoscale and thermal processing. Thin Solid Films, 2010, 518, 4644-4647.	0.8	0
84	Optical constants of Cu2ZnGeS4 bulk crystals. Journal of Applied Physics, 2010, 108, .	1.1	60
85	(Invited) Nanostructuring the Er3+ and Si Nanoparticle Distributions to Enhance the 1.5 μm Emission in Codoped Al2O3 Thin Films. ECS Transactions, 2010, 28, 229-239.	0.3	2
86	Flat-On Lamellae in Spin-Coated, Stable Films of Poly(propylene azelate). Langmuir, 2010, 26, 17540-17545.	1.6	11
87	Tuning the Er3+ sensitization by Si nanoparticles in nanostructured as-grown Al2O3 films. Journal of Applied Physics, 2009, 105, .	1.1	19
88	Ho3+-Doped Nanophase Glass Ceramics Enhance Efficiency of Si Solar Cells. MRS Bulletin, 2009, 34, 76-76.	1.7	0
89	Dielectric functions of CuIn _{1+2n} Se _{2+3n} and CuGa _{1+2n} Se _{2+3n} (n = 2.5, 3.0, 3.5). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1074-1077.	0.8	0
90	Characterisation of Cu(In _{1–x} Ga _x) ₅ Se ₈ by spectroscopic ellipsometry. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1078-1081.	0.8	5

#	Article	IF	CITATIONS
91	Grafting of Poly(acrylic acid) onto an Aluminum Surface. Langmuir, 2009, 25, 9094-9100.	1.6	16
92	Size-dependent thermo-optical properties of embedded Bi nanostructures. Nanotechnology, 2009, 20, 199801-199801.	1.3	0
93	Enhanced photoluminescence of nanostructured Er3+-doped a-Si/a-Al2O3 thin films prepared by PLD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 141-145.	1.7	4
94	Dielectric functions and optical constants modeling for CuIn3Se5 and CuIn5Se8. Journal of Applied Physics, 2008, 103, .	1.1	18
95	Critical separation for efficient Tm^3+-Tm^3+ energy transfer evidenced in nanostructured Tm^3+:Al_2O_3 thin films. Optics Letters, 2008, 33, 608.	1.7	19
96	Size-dependent thermo-optical properties of embedded Bi nanostructures. Nanotechnology, 2008, 19, 485708.	1.3	20
97	a-Si nanolayer induced enhancement of the 1.53μm photoluminescence in Er3+ doped a-Al2O3 thin films. Applied Physics Letters, 2008, 92, 121111.	1.5	11
98	Analysis of the optical properties of Cu(In1â^'xGax)3Se5 crystals. Journal of Applied Physics, 2008, 104, 093507.	1.1	3
99	Metallodielectric Multilayer Stacks Show Enhanced Ultrafast Optical Nonlinear Response. MRS Bulletin, 2008, 33, 4-4.	1.7	0
100	Modeling the optical constants of Cu2In4Se7 and CuGa3Se5 crystals. Journal of Applied Physics, 2007, 101, 013524.	1.1	15
101	Er ³⁺ luminescence sensitization by Si-nanoparticles in Al <inf>2</inf> 0 <inf>3</inf> thin films with a controlled nanoscale dopant distribution. , 2007, , .		0
102	Integrated Optical Device Fabricated from KY(WO ₄) ₂ . MRS Bulletin, 2007, 32, 303-303.	1.7	0
103	Stacking of Main Chain-Crown Ether Polymers in Thin Films. Langmuir, 2007, 23, 12677-12681.	1.6	22
104	Optical constants of CuGa5Se8 crystals. Journal of Applied Physics, 2007, 102, .	1.1	8
105	Broadband emission in Er–Tm codoped Al2O3 films: The role of energy transfer from Er to Tm. Journal of Applied Physics, 2007, 101, 033112.	1.1	26
106	Dielectric functions and fundamental band gaps of Cu2In4Se7, CuGa3Se5and CuGa5Se8crystals. Journal Physics D: Applied Physics, 2007, 40, 740-748.	1.3	21
107	Pulsed Laser Deposition for Functional Optical Films. , 2007, , 315-338.		5
108	Improving the photoluminescence response of Er-Tm: Al2O3 films by Yb codoping. Journal of Luminescence, 2007, 122-123, 32-35.	1.5	6

#	Article	IF	CITATIONS
109	Vanadium–Al2O3 nanostructured thin films prepared by pulsed laser deposition: Optical switching. Applied Surface Science, 2007, 253, 8136-8140.	3.1	2
110	The role of the laser fluence on the Al2O3 target in the nanostructure and morphology of VOx:Al2O3 thin films prepared by pulsed laser deposition. Applied Surface Science, 2007, 254, 1316-1321.	3.1	3
111	Optical activation of Er3+ in Al2O3 during pulsed laser deposition. Optical Materials, 2007, 29, 539-542.	1.7	12
112	Optical evidence for reactive processes when embedding Cu nanoparticles in Al2O3by pulsed laser deposition. Nanotechnology, 2006, 17, 4588-4593.	1.3	34
113	Advanced nanostructured materials for integrated optics. , 2006, , .		0
114	3D Nanostructures in Hydrogen Silsesquionxane Achieved by Proton Beam Writing. MRS Bulletin, 2006, 31, 367-368.	1.7	0
115	Optical characterization of CuIn3Se5, CuGa3Se5and CuGa5Se8crystals by spectroscopic ellipsometry. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2913-2918.	0.8	11
116	Metal-Dielectric Nanocomposites Produced by Pulsed Laser Deposition. , 2006, , 37-74.		0
117	Far-Field Raman Scattering Reveals Surface Plasmons of Gold Nanoparticle Arrays. MRS Bulletin, 2005, 30, 156-159.	1.7	0
118	Improving the photoluminescence of thin films by nanostructuring the rare-earth ion distribution. Applied Surface Science, 2005, 247, 8-17.	3.1	11
119	Tm-Er Codoping Al2O3 Thin Films: Activation by Annealing. Materials Research Society Symposia Proceedings, 2005, 866, 149.	0.1	1
120	Thermally driven optical switching in Bi nanostructures. Nanotechnology, 2005, 16, 3142-3145.	1.3	15
121	Resputtering and morphological changes of Au nanoparticles in nanocomposites as a function of the deposition conditions of the oxide capping layer. Nanotechnology, 2005, 16, 718-723.	1.3	17
122	Continuous-Wave 1.94 μm Laser Based on Tm:BaY ₂ F ₈ Lases from 1849 nm to 2059 nm. MRS Bulletin, 2005, 30, 421-422.	1.7	0
123	Broadband infrared emission from Er–Tm:Al2O3 thin films. Applied Physics Letters, 2005, 87, 111103.	1.5	26
124	Optical properties and electronic structure of polycrystalline Ag1â^'xCuxInSe2 alloys. Journal of Applied Physics, 2005, 97, 103515.	1,1	38
125	Nanostructuring the Er–Yb distribution to improve the photoluminescence response of thin films. Applied Physics Letters, 2004, 84, 2151-2153.	1.5	44
126	Hysteresis in the melting kinetics of Bi nanoparticles. Thin Solid Films, 2004, 453-454, 467-470.	0.8	16

#	Article	IF	CITATIONS
127	Structural and thermal properties of a Bi nano-plane embedded in amorphous germanium. Applied Physics A: Materials Science and Processing, 2004, 79, 1299-1302.	1.1	4
128	Evidence for self-sputtering during pulsed laser deposition of Zn. Applied Physics A: Materials Science and Processing, 2004, 79, 915-918.	1.1	7
129	Large-Scale Synthesis of Nearly Monodisperse Au and Ag Nanoparticles Achieved. MRS Bulletin, 2004, 29, 607-608.	1.7	0
130	Tandem OLEDs Deliver High Luminous Efficiency. MRS Bulletin, 2004, 29, 6-6.	1.7	6
131	Damage Threshold of Extreme-Ultraviolet Multilayer Mirrors Measured. MRS Bulletin, 2004, 29, 225-225.	1.7	0
132	Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures. Applied Physics Letters, 2003, 83, 1842-1844.	1.5	20
133	Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles. Journal of Physics Condensed Matter, 2003, 15, S3001-S3010.	0.7	27
134	Evidence for shallow implantation during the growth of bismuth nanocrystals by pulsed laser deposition. Journal of Applied Physics, 2003, 93, 6396-6398.	1.1	19
135	Time resolved dynamics of rapid melting and resolidification of Sb thin films under ns and ps laser pulse irradiation. Journal of Applied Physics, 2003, 94, 4961.	1.1	6
136	Shock-Wave Modulation of the Dielectric Constant of Photonic Crystals Produces Optical Phenomena. MRS Bulletin, 2003, 28, 549-550.	1.7	0
137	Ellipsometry Achieves Determination of Optical Constants and Crystal Orientation for Biaxial Absorbing Materials. MRS Bulletin, 2003, 28, 157-157.	1.7	0
138	The Shallow Implantation of Bismuth During the Growth of Bismuth Nanocrystals in Al2O3 by Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 2003, 780, 121.	0.1	5
139	Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition. Nanotechnology, 2002, 13, 465-470.	1.3	63
140	Structure and thermal stability of Fe : Al2O3 nanocomposite films. Journal Physics D: Applied Physics, 2002, 35, 916-922.	1.3	10
141	Glass-Ceramic Materials to Provide Broad-Band Light Sources. MRS Bulletin, 2002, 27, 664-664.	1.7	0
142	Optical and magneto-optical properties of Fe nanoparticles. Physical Review B, 2002, 65, .	1.1	48
143	Effect of oxygen pressure on the optical and structural properties ofCu:Al2O3nanocomposite films. Physical Review B, 2002, 66, .	1.1	22
144	Refractive index of Ag nanocrystals composite films in the neighborhood of the surface plasmon resonance. Journal of Applied Physics, 2002, 91, 1536-1541.	1.1	32

#	Article	IF	CITATIONS
145	Magnetic behavior of Fe:Al2O3 nanocomposite films produced by pulsed laser deposition. Journal of Applied Physics, 2001, 90, 6268-6274.	1.1	46
146	Photoluminescence performance of pulsed-laser deposited Al2O3 thin films with large erbium concentrations. Journal of Applied Physics, 2001, 90, 5120-5125.	1.1	37
147	Anomalous dispersion in nanocomposite films at the surface plasmon resonance. Applied Physics B: Lasers and Optics, 2001, 73, 339-343.	1.1	9
148	Structural studies of pulsed-laser deposited nanocomposite metal-oxide films. Journal of Microscopy, 2001, 201, 250-255.	0.8	16
149	Magneto-optical response of isolated and embedded Fe nanoparticles. IEEE Transactions on Magnetics, 2001, 37, 1416-1418.	1.2	4
150	Quantitative optical determination of the shape of Cu nanocrystals in a composite film. Journal of Applied Physics, 2001, 89, 5734-5738.	1.1	9
151	Low temperature Electron Cyclotron Resonance plasma technique for low loss integrated optics. Microelectronic Engineering, 2000, 53, 407-410.	1.1	2
152	Influence of the deposition parameters on the synthesis of nanocomposite materials produced by pulsed laser deposition. Applied Surface Science, 2000, 154-155, 449-453.	3.1	12
153	Influence of defects on the photoluminescence of pulsed-laser deposited Er-doped amorphous Al2O3 films. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 793-797.	0.6	36
154	Artificially nanostructured Cu:Al 2 O 3 films produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2000, 71, 583-586.	1.1	26
155	Delayed release of Li atoms from laser ablated lithium niobate. Applied Physics Letters, 2000, 76, 649-651.	1.5	18
156	Size effects investigated by Raman spectroscopy in Bi nanocrystals. Physical Review B, 1999, 60, 10080-10085.	1.1	69
157	The role of Er3+–Er3+ separation on the luminescence of Er–doped Al2O3 films prepared by pulsed laser deposition. Applied Physics Letters, 1999, 75, 4073-4075.	1.5	34
158	Size, shape anisotropy, and distribution of Cu nanocrystals prepared by pulsed laser deposition. Applied Surface Science, 1999, 138-139, 1-5.	3.1	37
159	Vacuum versus gas environment for the synthesis of nanocomposite films by pulsed-laser deposition. Applied Physics A: Materials Science and Processing, 1999, 69, S201-S207.	1.1	14
160	Critical parameters influencing the material distribution produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 1999, 69, S553-S556.	1.1	3
161	Crystallisation of thin Bi/Ge films: role of Bi crystal size. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 749-751.	1.0	1
162	Vacuum versus gas environment for the synthesis of nanocomposite films by pulsed-laser deposition. Applied Physics A: Materials Science and Processing, 1999, 69, S201-S207.	1.1	34

#	Article	IF	CITATIONS
163	Nanocrystal size dependence of the third-order nonlinear optical response of Cu:Al2O3 thin films. Applied Physics Letters, 1999, 74, 2791-2793.	1.5	69
164	<title>Pulsed laser deposition of nanocomposite thin films for photonic applications</title> ., 1999,,.		10
165	Bi nanocrystals embedded in an amorphous Ge matrix grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 1998, 66, 43-47.	1.1	24
166	Laser-induced modification of the nonlinear optical response of laser-deposited Cu:Al2O3 nanocomposite films. Thin Solid Films, 1998, 318, 96-99.	0.8	29
167	Synthesis by pulsed laser deposition of metallic nanoclusters embedded in an amorphous host. Applied Surface Science, 1998, 127-129, 339-343.	3.1	34
168	Matrix assisted laser desorption/ionisation studies of metallic nanoclusters produced by pulsed laser deposition. Applied Surface Science, 1998, 127-129, 383-387.	3.1	4
169	Optically active Er–Yb doped glass films prepared by pulsed laser deposition. Journal of Applied Physics, 1998, 84, 2352-2354.	1.1	27
170	The role of size effects on the crystallization of amorphous Ge in contact with Bi nanocrystals. Journal of Applied Physics, 1998, 84, 5283-5290.	1.1	11
171	Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals. Journal of Applied Physics, 1998, 84, 4509-4516.	1.1	58
172	<title>Nanocrystal composite thin films produced by pulsed laser deposition for nonlinear optical applications</title> . , 1998, 3404, 74.		2
173	Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility. Applied Physics Letters, 1997, 71, 2445-2447.	1.5	119
174	Pulsed laser deposition for optical doping of active waveguide films. Applied Surface Science, 1997, 109-110, 524-527.	3.1	13
175	Er Doped Active Waveguide Films Prepared by IN-SITU Doping During Pulsed Laser Deposition. , 1996, , .		0
176	In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition. Applied Physics Letters, 1996, 69, 1541-1543.	1.5	48
177	Segregation and Trapping of Erbium in Silicon at a Crystal-Amorphous or Crystal-Vacuum Interface. Materials Research Society Symposia Proceedings, 1996, 422, 21.	0.1	0
178	Luminescence Quenching in Erbium-Doped Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 1996, 422, 239.	0.1	4
179	Nanocrystalline Ge Synthesis by Picosecond Pulsed Laser Induced Melting and Rapid Soldddtcation. Materials Research Society Symposia Proceedings, 1996, 452, 839.	0.1	2
180	All laserâ€assisted heteroepitaxial growth of Si0.8Ge0.2 on Si(100): Pulsed laser deposition and laser induced melting solidification. Applied Physics Letters, 1996, 68, 1781-1783.	1.5	8

#	Article	IF	CITATIONS
181	Incorporation and optical activation of erbium in silicon using molecular beam epitaxy. Journal of Applied Physics, 1996, 79, 2658-2662.	1.1	42
182	Luminescence quenching in erbiumâ€doped hydrogenated amorphous silicon. Applied Physics Letters, 1996, 68, 997-999.	1.5	69
183	Luminescence quenching in erbiumâ€doped hydrogenated amorphous silicon. Applied Physics Letters, 1996, 68, 46-48.	1.5	34
184	Ion beam synthesis of planar opto-electronic devices. , 1996, , 393-399.		0
185	Ion beam synthesis of planar opto-electronic devices. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 393-399.	0.6	12
186	Segregation and trapping of erbium during silicon molecular beam epitaxy. Applied Physics Letters, 1995, 66, 1385-1387.	1.5	47
187	Erbium in crystal silicon: Optical activation, excitation, and concentration limits. Journal of Applied Physics, 1995, 77, 1256-1262.	1.1	126
188	Relaxation and crystallization kinetics of amorphous germanium films by nanosecond laser pulses. Journal of Applied Physics, 1994, 75, 7287-7291.	1.1	34
189	1.5 μm roomâ€ŧemperature luminescence from Erâ€implanted oxygenâ€doped silicon epitaxial films grown by molecular beam epitaxy. Journal of Applied Physics, 1994, 75, 2644-2647.	1.1	28
190	Transient-reflectivity study of pulsed UV-laser-induced oxidation of Sb. Applied Physics A: Solids and Surfaces, 1994, 58, 417-421.	1.4	2
191	Structural ripple formation in Ge/Sb multilayers induced by laser irradiation. Applied Physics A: Solids and Surfaces, 1994, 58, 197-202.	1.4	9
192	Temperature dependence and quenching processes of the intra-4fluminescence of Er in crystalline Si. Physical Review B, 1994, 49, 16313-16320.	1.1	263
193	Early stages of laser mixing process in Sb/Ge multilayer thin films. Applied Physics A: Materials Science and Processing, 1993, 56, 132-137.	1.1	7
194	The correlation between microstructure, chemical profile and reflectivity changes in laser-irradiated Sb/Ge multilayer films. Journal of Magnetism and Magnetic Materials, 1993, 126, 599-601.	1.0	1
195	Melting kinetics of Sb under nanosecond UV laser irradiation. Journal of Applied Physics, 1993, 73, 3099-3101.	1.1	19
196	Multifractal patterns formed by laser irradiation in GeAl thin multilayer films. Physical Review B, 1992, 46, 487-490.	1.1	15
197	Optical properties of laser-deposited a-Ge films: a comparison with sputtered and e-beam-deposited films. Applied Optics, 1992, 31, 6133.	2.1	52
198	Interdiffusion at Sb/Ge interfaces induced in thin multilayer films by nanosecond laser irradiation. Applied Physics A: Solids and Surfaces, 1992, 54, 538-542.	1.4	4

#	Article	IF	CITATIONS
199	Grain boundary triggering of diffusion in laser melted Sbî—,Ge bilayer films and surface ripples. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 14, 37-41.	1.7	11
200	UV-laser-induced oxidation kinetics of c-Ge: transient reflectivity study. Applied Surface Science, 1992, 54, 341-344.	3.1	5
201	Laser induced interface reactions in Sb/Ge multilayer thin films: a study by RBS and CS-TEM. Nuclear Instruments & Methods in Physics Research B, 1992, 64, 807-810.	0.6	6
202	Kinetics of laser induced interface reactions in Sb/Ge thin multilayer films. Surface Science, 1991, 251-252, 1006-1011.	0.8	5
203	Thermoluminescence in MgAl2O4above 300K. Radiation Effects and Defects in Solids, 1991, 119-121, 63-68.	0.4	7
204	Good-quality Ge films grown by excimer laser deposition. Applied Surface Science, 1990, 46, 249-253.	3.1	44
205	Diffusion and microstructures induced by excimer laser irradiation in Ge-Sb thin film bilayers. Applied Surface Science, 1990, 46, 405-410.	3.1	6
206	1.5 μm Room-temperature luminescence from erbium in oxygen-doped silicon grown by molecular beam epitaxy. , 0, , .		0
207	Rare-Earth Doping of Active Waveguides by Pulsed Laser Deposition. , 0, , .		0
208	Thin film photonic structures based on metal nanocrystals periodically distributed in a dielectric host. , 0, , .		0
209	Enhanced luminescence performance by controlling the er and yb distribution in the nanometer scale. , 0, , .		0
210	Concentration dependence on photoluminescence properties of Er-Tm codoped Al/sub 2/O/sub 3/ thin films. , 0, , .		0