Hirokazu Fukidome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-based devices in terahertz science and technology. Journal Physics D: Applied Physics, 2012, 45, 303001.	2.8	234
2	Epitaxial graphene on silicon substrates. Journal Physics D: Applied Physics, 2010, 43, 374012.	2.8	107
3	Adsorption of CO ₂ on Graphene: A Combined TPD, XPS, and vdW-DF Study. Journal of Physical Chemistry C, 2017, 121, 2807-2814.	3.1	76
4	Observing hot carrier distribution in an <i>n</i> -type epitaxial graphene on a SiC substrate. Applied Physics Letters, 2014, 104, .	3.3	65
5	Raman-Scattering Spectroscopy of Epitaxial Graphene Formed on SiC Film on Si Substrate. E-Journal of Surface Science and Nanotechnology, 2009, 7, 107-109.	0.4	63
6	In-Situ FTIR Studies of Reactions at the Silicon/Liquid Interface:  Wet Chemical Etching of Ultrathin SiO2 on Si(100). Journal of Physical Chemistry B, 2001, 105, 3903-3907.	2.6	43
7	A Very Simple Method of Flattening Si(111) Surface at an Atomic Level Using Oxygen-Free Water. Japanese Journal of Applied Physics, 1999, 38, L1085-L1086.	1.5	42
8	Observation of Amplified Stimulated Terahertz Emission from Optically Pumped Heteroepitaxial Graphene-on-Silicon Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 655-665.	2.2	41
9	Controls over Structural and Electronic Properties of Epitaxial Graphene on Silicon Using Surface Termination of 3C-SiC(111)/Si. Applied Physics Express, 2011, 4, 115104.	2.4	39
10	Control of epitaxy of graphene by crystallographic orientation of a Si substrate toward device applications. Journal of Materials Chemistry, 2011, 21, 17242.	6.7	37
11	Direct observation of charge transfer region at interfaces in graphene devices. Applied Physics Letters, 2013, 102, .	3.3	33
12	Interfacial Charge States in Graphene on SiC Studied by Noncontact Scanning Nonlinear Dielectric Potentiometry. Physical Review Letters, 2015, 114, 226103.	7.8	31
13	Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111). Nanoscale Research Letters, 2010, 5, 1888-1891.	5.7	30
14	Graphene materials and devices in terahertz science and technology. MRS Bulletin, 2012, 37, 1235-1243.	3.5	30
15	Orbital-specific Tunability of Many-Body Effects in Bilayer Graphene by Gate Bias and Metal Contact. Scientific Reports, 2014, 4, 3713.	3.3	28
16	Ultrafast Unbalanced Electron Distributions in Quasicrystalline 30° Twisted Bilayer Graphene. ACS Nano, 2019, 13, 11981-11987.	14.6	28
17	Enhanced Etching Rate of Silicon in Fluoride Containing Solutions at pH 6.4. Journal of the Electrochemical Society, 1996, 143, 2683-2686.	2.9	26
18	Effect of dissolved oxygen on etching process of Si(111)in 2.5% NH3 solution. Surface Science, 2000, 463, L649-L653.	1.9	21

HIROKAZU FUKIDOME

#	Article	IF	CITATIONS
19	Carbonaceous field effect transistor with graphene and diamondlike carbon. Diamond and Related Materials, 2012, 22, 118-123.	3.9	21
20	Enhancement of CO2 adsorption on oxygen-functionalized epitaxial graphene surface under near-ambient conditions. Physical Chemistry Chemical Physics, 2018, 20, 19532-19538.	2.8	19
21	Influence of interface dipole layers on the performance of graphene field effect transistors. Carbon, 2019, 152, 680-687.	10.3	19
22	Epitaxial graphene top-gate FETs on silicon substrates. Solid-State Electronics, 2010, 54, 1071-1075.	1.4	18
23	In Situ Atomic Force Microscopy Observation of Dissolution Process of Si(111) in Oxygen-Free Water at Room Temperature. Electrochemical and Solid-State Letters, 1999, 2, 393.	2.2	16
24	A graphene-based magnetoplasmonic metasurface for actively tunable transmission and polarization rotation at terahertz frequencies. Applied Physics Letters, 2020, 116, 221107.	3.3	15
25	Photonic Frequency Double-Mixing Conversion Over the 120-GHz Band Using InP- and Graphene-Based Transistors. Journal of Lightwave Technology, 2016, 34, 2011-2019.	4.6	14
26	A table-top formation of bilayer quasi-free-standing epitaxial-graphene on SiC(0001) by microwave annealing in air. Carbon, 2018, 130, 792-798.	10.3	14
27	Pinpoint operando analysis of the electronic states of a graphene transistor using photoelectron nanospectroscopy. Applied Physics Express, 2014, 7, 065101.	2.4	13
28	Microscopically-Tuned Band Structure of Epitaxial Graphene through Interface and Stacking Variations Using Si Substrate Microfabrication. Scientific Reports, 2015, 4, 5173.	3.3	13
29	Scanning Tunneling Microscopy Study of Water Molecules on Pd(110) at Cryogenic Temperature. Japanese Journal of Applied Physics, 2002, 41, 4932-4935.	1.5	10
30	Operation Mechanism of GaN-based Transistors Elucidated by Element-Specific X-ray Nanospectroscopy. Scientific Reports, 2018, 8, 13268.	3.3	9
31	Dynamics of surface electron trapping of a GaN-based transistors revealed by spatiotemporally resolved x-ray spectroscopy. Applied Physics Letters, 2020, 117, .	3.3	9
32	Visualization of Single Atomic Steps on An Ultra-Flat Si(100) Surface by Advanced Differential Interference Contrast Microscopy. Electrochemical and Solid-State Letters, 2011, 14, H351.	2.2	8
33	Fabrication of multi-layer Bi 2 Se 3 devices and observation of anomalous electrical transport behaviors. Materials Science in Semiconductor Processing, 2017, 68, 128-132.	4.0	8
34	Analysis of Silicon Surface in Connection with Its Unique Electrochemical and Etching Behavior. Journal of the Electrochemical Society, 1997, 144, 679-682.	2.9	7
35	Characteristic Configuration of Cis-2-butene Molecule on Pd(110) Determined by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2002, 41, 4976-4979.	1.5	6
36	Formation of qualified epitaxial graphene on Si substrates using two-step heteroexpitaxy of C-terminated 3C-SiC(-1-1-1) on Si(110). Diamond and Related Materials, 2016, 67, 51-53.	3.9	6

Hirokazu Fukidome

#	Article	IF	CITATIONS
37	Element―and Siteâ€Specific Manyâ€Body Interactions in Few‣ayer MoS ₂ During Xâ€Ray Absor Processes. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800539.	otion 1.8	6
38	Observation of nanoscopic charge-transfer region at metal/MoS ₂ interface. Materials Research Express, 2016, 3, 075004.	1.6	5
39	Microscopically controlled oxidation of H/Si(100) by lateral surface electric field studied by emission electron microscopies. Surface Science, 2007, 601, 4675-4679.	1.9	3
40	Extremely uniform epitaxial growth of graphene from sputtered SiC films on SiC substrates. MRS Advances, 2017, 2, 51-56.	0.9	3
41	Electrical transport properties of gate tunable graphene lateral tunnel diodes. Japanese Journal of Applied Physics, 2020, 59, SIID03.	1.5	3
42	Graphene-on-Silicon Formation by Thermal Conversion of 3C-SiC Thin Films on Si(111), (110), (100) Substrates. Hyomen Kagaku, 2010, 31, 352-358.	0.0	3
43	Temperature-Dependent Contrasts of Lateralp+-nJunctions on H/Si(100) Imaged with Photoemission Electron Microscopy. Japanese Journal of Applied Physics, 2005, 44, L1417-L1419.	1.5	2
44	Evaporation and Thermionic Emission Processes of Pb/W(110) ImagedIn Situby Emission Electron Microscopy. Japanese Journal of Applied Physics, 2006, 45, 70-72.	1.5	2
45	Transmission-Electron-Microscopy Observations on the Growth of Epitaxial Graphene on 3C-SiC(110) and 3C-SiC(100) Virtual Substrates. Materials Science Forum, 2012, 711, 242-245.	0.3	2
46	Variation of Contrast of H/pn-Si(100) Imaged with Different Emission Electron Microscopies. E-Journal of Surface Science and Nanotechnology, 2006, 4, 539-543.	0.4	2
47	Direct Formation of Solution-based Al2O3 on Epitaxial Graphene Surface for Sensor Applications. Sensors and Materials, 2019, 31, 2291.	0.5	2
48	Microscopic Changes of Thin Films of Directly Thiolated Fullerenes Depending on Substrate and Number of Thiol. Japanese Journal of Applied Physics, 2007, 46, 5560.	1.5	1
49	Interaction of cesium with charged oxide under UV irradiation imaged by photoemission electron microscopy. Surface Science, 2007, 601, 5309-5312.	1.9	1
50	Inhomogeneous longitudinal distribution of Ni atoms on graphene induced by layer-number-dependent internal diffusion. Applied Physics Letters, 2016, 109, 111604.	3.3	1
51	Modulation of Electronic States near Electrodes in Graphene Transistors Observed by Operando Photoelectron Nanospectroscopy. Sensors and Materials, 2019, 31, 2303.	0.5	1
52	(Invited) Epitaxial Formation of Graphene on Si Substrates: From Heteroepitaxy of 3C-SiC to Si Sublimation. ECS Transactions, 2010, 33, 859-867.	0.5	0
53	Nanoscale Control of Structural and Electronic Properties of Graphene through Substrate Interaction. Hyomen Kagaku, 2012, 33, 546-551.	0.0	0
54	Highly Brilliant Synchrotron Radiation Operando Spectromicroscopy to Bridge a Gap between Material Electronic Properties and Device Performances of 2D Atomic Layers. Hyomen Kagaku, 2015, 36, 303-308.	0.0	0

#	Article	IF	CITATIONS
55	Atomically Controlled Surfaces, Interfaces and Nanostructures/Scanning Probe Microscopy. Japanese Journal of Applied Physics, 2019, 58, SI0001.	1.5	0
56	Operando Soft X-Ray Spectromicroscopic Measurement and the Use for High-Performance Devices and Circuits. , 2019, , 199-216.		0
57	Creation of Affordable Manufacturing Processes of Ultrahigh-quality Graphene Growth and High-frequency Graphene Devices by Using Single-crystalline SiC Thin Films on Device-type Substrates. Vacuum and Surface Science, 2021, 64, 318-323.	0.1	0
58	Discharge Instability at Patterned Conductive Layers on Insulating Substrates during Pulsed-Plasma Chemical Vapor Deposition under Near Atmospheric Pressures. E-Journal of Surface Science and Nanotechnology, 2013, 11, 47-52.	0.4	0
59	Operando Spectromicroscopy Observation of Many-Body Effects in Graphene Device. The Review of Laser Engineering, 2014, 42, 633.	0.0	0