
Edilamar M. Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerobic Exercise Training–Induced Left Ventricular Hypertrophy Involves Regulatory MicroRNAs, Decreased Angiotensin-Converting Enzyme-Angiotensin II, and Synergistic Regulation of Angiotensin-Converting Enzyme 2-Angiotensin (1-7). Hypertension, 2011, 58, 182-189.	1.3	197
2	Brain renin angiotensin in disease. Journal of Molecular Medicine, 2008, 86, 715-722.	1.7	163
3	MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological Genomics, 2011, 43, 665-673.	1.0	157
4	Exercise Training Prevents the Microvascular Rarefaction in Hypertension Balancing Angiogenic and Apoptotic Factors. Hypertension, 2012, 59, 513-520.	1.3	142
5	Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Medicine and Science in Sports and Exercise, 2012, 44, 1453-1462.	0.2	126
6	Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. British Journal of Pharmacology, 2013, 168, 686-703.	2.7	119
7	Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H543-H552.	1.5	119
8	Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3575-H3583.	1.5	95
9	Expression of MicroRNA-29 and Collagen in Cardiac Muscle after Swimming Training in Myocardial-Infarcted Rats. Cellular Physiology and Biochemistry, 2014, 33, 657-669.	1.1	79
10	Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Brazilian Journal of Medical and Biological Research, 2011, 44, 836-847.	0.7	68
11	Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1655-H1666.	1.5	68
12	CARDIOVASCULAR ADAPTATIONS IN RATS SUBMITTED TO A RESISTANCE-TRAINING MODEL. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 249-254.	0.9	65
13	Exercise training restores the endothelial progenitor cells number and function in hypertension. Journal of Hypertension, 2012, 30, 2133-2143.	0.3	64
14	Effects of Exercise Training on Circulating and Skeletal Muscle Renin-Angiotensin System in Chronic Heart Failure Rats. PLoS ONE, 2014, 9, e98012.	1.1	61
15	Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. Neurological Sciences, 2021, 42, 1325-1334.	0.9	58
16	Effects of Resistance Training on Ventricular Function and Hypertrophy in a Rat Model. Clinical Medicine and Research, 2007, 5, 114-120.	0.4	56
17	Exercise training reduces cardiac angiotensin II levels and prevents cardiac dysfunction in a genetic model of sympathetic hyperactivity-induced heart failure in mice. European Journal of Applied Physiology, 2009, 105, 843-50.	1.2	55
18	Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans. Cell Stress and Chaperones, 2010, 15, 885-895.	1.2	55

#	Article	IF	CITATIONS
19	Epigenetic control of exercise training-induced cardiac hypertrophy by <i>miR-208</i> . Clinical Science, 2016, 130, 2005-2015.	1.8	54
20	The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R26-R32.	0.9	51
21	The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. Journal of Molecular and Cellular Cardiology, 2013, 57, 119-128.	0.9	51
22	Effects of Aerobic Exercise Training on Cardiac Renin-Angiotensin System in an Obese Zucker Rat Strain. PLoS ONE, 2012, 7, e46114.	1.1	50
23	Resistance Training Regulates Cardiac Function through Modulation of miRNA-214. International Journal of Molecular Sciences, 2015, 16, 6855-6867.	1.8	46
24	Exercise training in hypertension: Role of microRNAs. World Journal of Cardiology, 2014, 6, 713.	0.5	45
25	Exercise training restores the cardiac microRNA-1 and â^214 levels regulating Ca2+ handling after myocardial infarction. BMC Cardiovascular Disorders, 2015, 15, 166.	0.7	43
26	AT1 Receptor Blockade Attenuates Insulin Resistance and Myocardial Remodeling in Rats with Diet-Induced Obesity. PLoS ONE, 2014, 9, e86447.	1.1	42
27	AT ₁ receptor participates in the cardiac hypertrophy induced by resistance training in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R381-R387.	0.9	38
28	Peripheral vascular reactivity and serum <i>BDNF</i> responses to aerobic training are impaired by the <i>BDNF</i> Val66Met polymorphism. Physiological Genomics, 2016, 48, 116-123.	1.0	38
29	Effects of Mercury on the Isolated Heart Muscle Are Prevented by DTT and Cysteine. Toxicology and Applied Pharmacology, 1999, 156, 113-118.	1.3	37
30	Nandrolone and resistance training induce heart remodeling: Role of fetal genes and implications for cardiac pathophysiology. Life Sciences, 2011, 89, 631-637.	2.0	37
31	Obesity Downregulates MicroRNA-126 Inducing Capillary Rarefaction in Skeletal Muscle: Effects of Aerobic Exercise Training. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-9.	1.9	37
32	Low nanomolar concentration of mercury chloride increases vascular reactivity to phenylephrine and local angiotensin production in rats. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 147, 252-260.	1.3	34
33	Increased Clearance of Reactive Aldehydes and Damaged Proteins in Hypertension-Induced Compensated Cardiac Hypertrophy: Impact of Exercise Training. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	1.9	33
34	PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiological Genomics, 2015, 47, 13-23.	1.0	33
35	Changes in the pro-inflammatory cytokine production and peritoneal macrophage function in rats with chronic heart failure. Cytokine, 2006, 34, 284-290.	1.4	32
36	Chronic β-adrenoceptor stimulation and cardiac hypertrophy with no induction of circulating renin. European Journal of Pharmacology, 2005, 520, 135-141.	1.7	31

Edilamar M. Oliveira

#	Article	IF	CITATIONS
37	Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats. Journal of Applied Physiology, 2007, 102, 2033-2039.	1.2	31
38	Mercury Effects on the Contractile Activity of Isolated Heart Muscle. Toxicology and Applied Pharmacology, 1994, 128, 86-91.	1.3	30
39	Characterization of angiotensin-converting enzymes 1 and 2 in the soleus and plantaris muscles of rats. Brazilian Journal of Medical and Biological Research, 2010, 43, 837-842.	0.7	30
40	Haemodynamic and electrophysiological acute toxic effects of mercury in anaesthetized rats and in langendorff perfused rat hearts. Pharmacological Research, 1995, 32, 27-36.	3.1	29
41	Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. Advances in Experimental Medicine and Biology, 2017, 1000, 281-322.	0.8	29
42	Local renin-angiotensin system regulates left ventricular hypertrophy induced by swimming training independent of circulating renin: a pharmacological study. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2009, 10, 15-23.	1.0	28
43	Anabolic Steroid Associated to Physical Training Induces Deleterious Cardiac Effects. Medicine and Science in Sports and Exercise, 2011, 43, 1836-1848.	0.2	28
44	Exercise training modulates the hepatic renin–angiotensin system in fructoseâ€fed rats. Experimental Physiology, 2017, 102, 1208-1220.	0.9	28
45	Effects of mercury on myosin ATPase in the ventricular myocardium of the rat. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 135, 269-275.	1.3	26
46	The renin–angiotensin system is modulated by swimming training depending on the age of spontaneously hypertensive rats. Life Sciences, 2011, 89, 93-99.	2.0	26
47	Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats. Clinics, 2011, 66, 2105-2111.	0.6	26
48	Severe obstructive sleep apnea is associated with circulating microRNAs related to heart failure, myocardial ischemia, and cancer proliferation. Sleep and Breathing, 2020, 24, 1463-1472.	0.9	26
49	Characterization and localization of an ATP diphosphohydrolase activity (EC 3.6.1.5) in sarcolemmal membrane from rat heart. Molecular and Cellular Biochemistry, 1997, 170, 115-123.	1.4	25
50	Effects of high sodium intake diet on the vascular reactivity to phenylephrine on rat isolated caudal and renal vascular beds: Endothelial modulation. Life Sciences, 2006, 78, 2272-2279.	2.0	25
51	Cardiovascular adaptive responses in rats submitted to moderate resistance training. European Journal of Applied Physiology, 2008, 103, 605-613.	1.2	24
52	Hemodynamic, Morphometric and Autonomic Patterns in Hypertensive Rats - Renin-Angiotensin System Modulation. Clinics, 2010, 65, 85-92.	0.6	24
53	Elimination of Influences of the ACTN3 R577X Variant on Oxygen Uptake by Endurance Training in Healthy Individuals. International Journal of Sports Physiology and Performance, 2015, 10, 636-641.	1.1	22
54	Regional effects of low-intensity endurance training on structural and mechanical properties of rat ventricular myocytes. Journal of Applied Physiology, 2013, 115, 107-115.	1.2	21

#	Article	IF	CITATIONS
55	Effects of oral <i>N</i> -acetylcysteine on walking capacity, leg reactive hyperemia, and inflammatory and angiogenic mediators in patients with intermittent claudication. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H897-H905.	1.5	21
56	Effects of aerobic and inspiratory training on skeletal muscle microRNAâ€1 and downstreamâ€associated pathways in patients with heart failure. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 89-102.	2.9	21
57	Long Non-Coding RNAs in Cardiovascular Diseases: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. Non-coding RNA, 2021, 7, 65.	1.3	21
58	Effects of mild running on substantia nigra during early neurodegeneration. Journal of Sports Sciences, 2018, 36, 1363-1370.	1.0	20
59	Influence of angiotensinogen and angiotensin-converting enzyme polymorphisms on cardiac hypertrophy and improvement on maximal aerobic capacity caused by exercise training. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 487-492.	3.1	19
60	Exercise Training Restores the Cardiac Microrna-16 Levels Preventing Microvascular Rarefaction in Obese Zucker Rats. Obesity Facts, 2018, 11, 15-24.	1.6	18
61	In vitroandin vivoeffects of HgCl2on synaptosomal ATP diphosphohydrolase (EC 3.6.1.5) from cerebral cortex of developing rats. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1994, 102, 251-254.	0.1	16
62	Vascular reactivity and ACE activity response to exercise training are modulated by the +9/â~'9 bradykinin B ₂ receptor gene functional polymorphism. Physiological Genomics, 2013, 45, 487-492.	1.0	16
63	Physical Exercise and Regulation of Intracellular Calcium in Cardiomyocytes of Hypertensive Rats. Arquivos Brasileiros De Cardiologia, 2018, 111, 172-179.	0.3	16
64	POSTâ€RESISTANCE EXERCISE HYPOTENSION IN SPONTANEOUSLY HYPERTENSIVE RATS IS MEDIATED BY NITRIC OXIDE. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 782-787.	0.9	15
65	Effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of atrial β-adrenergic receptors. Life Sciences, 2013, 92, 1029-1035.	2.0	15
66	NO Signaling in the Cardiovascular System and Exercise. Advances in Experimental Medicine and Biology, 2017, 1000, 211-245.	0.8	15
67	Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiological Genomics, 2010, 42A, 71-77.	1.0	14
68	Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats. Brazilian Journal of Medical and Biological Research, 2014, 47, 960-965.	0.7	14
69	ACE polymorphisms and the acute response of blood pressure to a walk in medicated hypertensive patients. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 720-729.	1.0	14
70	Captopril does not Potentiate Post-Exercise Hypotension: A Randomized Crossover Study. International Journal of Sports Medicine, 2017, 38, 270-277.	0.8	14
71	Cardiovascular Adaptations Induced by Resistance Training in Animal Models. International Journal of Medical Sciences, 2018, 15, 403-410.	1.1	14
72	Mesenchymal stem cell therapy associated with endurance exercise training: Effects on the structural and functional remodeling of infarcted rat hearts. Journal of Molecular and Cellular Cardiology, 2016, 90, 111-119.	0.9	13

Edilamar M. Oliveira

#	Article	IF	CITATIONS
73	Exercise Training Restores Cardiac MicroRNA-1 and MicroRNA-29c to Nonpathological Levels in Obese Rats. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	13
74	Exercise training prevents obesity-associated disorders: Role of miRNA-208a and MED13. Molecular and Cellular Endocrinology, 2018, 476, 148-154.	1.6	13
75	Molecular Pathways Involved in Aerobic Exercise Training Enhance Vascular Relaxation. Medicine and Science in Sports and Exercise, 2020, 52, 2117-2126.	0.2	12
76	Lipopolysaccharide exposure modulates the contractile and migratory phenotypes of vascular smooth muscle cells. Life Sciences, 2020, 241, 117098.	2.0	11
77	Low-dose Enalapril Reduces Angiotensin II and Attenuates Diabetic-induced Cardiac and Autonomic Dysfunctions. Journal of Cardiovascular Pharmacology, 2012, 59, 58-65.	0.8	10
78	Tendon structural adaptations to load exercise are inhibited by anabolic androgenic steroids. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, e39-51.	1.3	10
79	MicroRNAs in Obesity-Associated Disorders: The Role of Exercise Training. Obesity Facts, 2022, 15, 105-117.	1.6	10
80	DISSOCIATION OF BLOOD PRESSURE AND SYMPATHETIC ACTIVATION OF RENIN RELEASE IN SINOAORTIC-DENERVATED RATS. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 471-476.	0.9	9
81	Paternal Resistance Training Induced Modifications in the Left Ventricle Proteome Independent of Offspring Diet. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	9
82	Antisense Therapy for Cardiovascular Diseases. Current Pharmaceutical Design, 2015, 21, 4417-4426.	0.9	9
83	High-intensity interval training followed by postexercise cold-water immersion does not alter angiogenic circulating cells, but increases circulating endothelial cells. Applied Physiology, Nutrition and Metabolism, 2020, 45, 101-111.	0.9	8
84	Exercise Training Preserves Myocardial Strain and Improves Exercise Tolerance in Doxorubicin-Induced Cardiotoxicity. Frontiers in Cardiovascular Medicine, 2021, 8, 605993.	1.1	8
85	A associação de esteroide anabolizante ao treinamento fÃsico aeróbio leva a alterações morfológicas cardÃacas e perda de função ventricular em ratos. Revista Brasileira De Medicina Do Esporte, 2011, 17, 137-141.	0.1	8
86	MicroRNAs in type 2 diabetes mellitus: potential role of physical exercise. Reviews in Cardiovascular Medicine, 2022, 23, 1.	0.5	8
87	Effects of controlled doses of Oxyelite Pro on physical performance in rats. Nutrition and Metabolism, 2016, 13, 90.	1.3	7
88	Resistance training attenuates salt overload-induced cardiac remodeling and diastolic dysfunction in normotensive rats. Brazilian Journal of Medical and Biological Research, 2017, 50, e6146.	0.7	7
89	Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: Interactions with <i>ACE I/D</i> polymorphism and association with vascular reactivity. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2018, 19, 147032031876172.	1.0	7
90	Dipeptidyl peptidase-4 inhibition prevents vascular dysfunction induced by β-adrenergic hyperactivity. Biomedicine and Pharmacotherapy, 2019, 113, 108733.	2.5	7

#	Article	IF	CITATIONS
91	Modulation of cardiac renin-angiotensin system, redox status and inflammatory profile by different volumes of aerobic exercise training in obese rats. Free Radical Biology and Medicine, 2020, 156, 125-136.	1.3	7
92	Enalapril and treadmill running reduce adiposity, but only the latter causes adipose tissue browning in mice. Journal of Cellular Physiology, 2021, 236, 900-910.	2.0	7
93	O papel do esteroide anabolizante sobre a hipertrofia e força muscular em treinamentos de resistência aeróbia e de força. Revista Brasileira De Medicina Do Esporte, 2011, 17, 212-217.	0.1	6
94	O treinamento fÃsico aeróbio corrige a rarefação capilar e as alterações nas proporções dos tipos de fibra muscular esquelética em ratos espontaneamente hipertensos. Revista Brasileira De Medicina Do Esporte, 2012, 18, 267-272.	0.1	6
95	Cardioprotection Generated by Aerobic Exercise Training is Not Related to the Proliferation of Cardiomyocytes and Angiotensin-(1-7) Levels in the Hearts of Rats with Supravalvar Aortic Stenosis. Cellular Physiology and Biochemistry, 2020, 54, 719-735.	1.1	6
96	Effects of Aerobic Exercise Training on MyomiRs Expression in Cachectic and Non-Cachectic Cancer Mice. Cancers, 2021, 13, 5728.	1.7	6
97	CHRONIC SALT LOADING AND CARDIOVASCULAR-ASSOCIATED CHANGES IN EXPERIMENTAL DIABETES IN RATS. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 574-580.	0.9	5
98	O treinamento fÃsico aeróbio inibe a sinalização apoptótica muscular esquelética mediada por VEGF-VEGR2 em ratos espontaneamente hipertensos. Revista Brasileira De Medicina Do Esporte, 2012, 18, 412-418.	0.1	5
99	Práticas pedagógicas como cenário para a construção do conhecimento pedagógico do conteúdo dos futuros professores de Educação FÃsica. Revista Da Educação FÃsica, 2012, 23, .	0.0	5
100	The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70S6K1 and AMPK signaling pathway responses in rat skeletal muscle. Brazilian Journal of Medical and Biological Research, 2013, 46, 343-347.	0.7	5
101	Carbohydrate supplementation attenuates decrement in performance in overtrained rats. Applied Physiology, Nutrition and Metabolism, 2016, 41, 76-82.	0.9	5
102	Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats. Clinics, 2017, 72, 310-316.	0.6	5
103	Angiotensin converting enzyme 2 polymorphisms and postexercise hypotension in hypertensive medicated individuals. Clinical Physiology and Functional Imaging, 2018, 38, 206-212.	0.5	5
104	Increased angiotensin II from adipose tissue modulates myocardial collagen I and III in obese rats. Life Sciences, 2020, 252, 117650.	2.0	5
105	Breast Cancer Promotes Cardiac Dysfunction Through Deregulation of Cardiomyocyte Ca ²⁺ â€Handling Protein Expression That is Not Reversed by Exercise Training. Journal of the American Heart Association, 2021, 10, e018076.	1.6	5
106	mTOR signaling-related microRNAs as cardiac hypertrophy modulators in high-volume endurance training. Journal of Applied Physiology, 2022, 132, 126-139.	1.2	5
107	1011 ANGIOTENSIN II PROMOTES SKELETAL MUSCLE ANGIOGENESIS INDUCED BY EXERCISE TRAINING. Journal of Hypertension, 2012, 30, e293.	0.3	4
108	Effects of direct high sodium exposure at endothelial cell migration. Biochemical and Biophysical Research Communications, 2019, 514, 1257-1263.	1.0	4

#	Article	IF	CITATIONS
109	Physical activity intervention improved the number and functionality of endothelial progenitor cells in low birth weight children. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 60-70.	1.1	4
110	Respostas Fisiológicas à Caminhada Máxima e Submáxima em Pacientes com Doença Arterial Periférica Sintomática. Arquivos Brasileiros De Cardiologia, 2021, 117, 309-316.	0.3	4
111	Local and Systemic Inflammation and Oxidative Stress After a Single Bout of Maximal Walking in Patients With Symptomatic Peripheral Artery Disease. Journal of Cardiovascular Nursing, 2021, 36, 498-506.	0.6	3
112	Nandrolone increases angiotensin-I converting enzyme activity in rats tendons. Revista Brasileira De Medicina Do Esporte, 2015, 21, 173-177.	0.1	2
113	Commentaries on Viewpoint: The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. Journal of Applied Physiology, 2020, 129, 868-871.	1.2	2
114	ExercÃcio de força ativa a via AKT/mTor pelo receptor de angiotensina II tipo I no músculo cardÃaco de ratos. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2011, 25, 377-385.	0.1	2
115	Treinamento fÃsico de natação promove remodelamento cardÃaco e melhora a perfusão sanguÃnea no músculo cardÃaco de SHR via mecanismo dependente de adenosina. Revista Brasileira De Medicina Do Esporte, 2011, 17, 193-197.	0.1	1
116	Esteróides anabolizantes: do atleta ao cardiopata. Revista Da Educação FÃsica, 2012, 23, .	0.0	1
117	O grau de melhora na função das células progenitoras endoteliais derivadas da medula óssea é dependente do volume de treinamento fÃsico aerÁ³bio. Revista Brasileira De Medicina Do Esporte, 2013, 19, 260-266.	0.1	1
118	The importance of animal studies in Exercise Science. Motriz Revista De Educacao Fisica, 2017, 23, .	0.3	1
119	Aerobic Training in Young Men Increases the Transfer of Cholesterol to High Density LipoproteinIn Vitro: Impact of High Density Lipoprotein Size. Lipids, 2019, 54, 381-388.	0.7	1
120	Blockade of AT1 receptor restore the migration of vascular smooth muscle cells in high sodium medium. Cell Biology International, 2019, 43, 890-898.	1.4	1
121	Molecular mechanisms underlying fructoseâ€induced cardiovascular disease: exercise, metabolic pathways and microRNAs. Experimental Physiology, 2021, 106, 1224-1234.	0.9	1
122	Physical activity effects on bladder dysfunction in an obese and insulinâ€resistant murine model. Physiological Reports, 2021, 9, e14792.	0.7	1
123	Endurance training promotes upregulation in microRNAâ€⊉06 on blood and in human skeletal muscle. FASEB Journal, 2013, 27, 1132.32.	0.2	1
124	Cardiac AT1 Receptor-Dependent and IGF1 Receptor-Independent Signaling Is Activated by a Single Bout of Resistance Exercise. Physiological Research, 2017, 66, 1061-1065.	0.4	1
125	Angiotensin II Promotes Skeletal Muscle Angiogenesis Induced by Volume-Dependent Aerobic Exercise Training: Effects on miRNAs-27a/b and Oxidant–Antioxidant Balance. Antioxidants, 2022, 11, 651.	2.2	1
126	Cardiac neurohumoral control during early and late stage of heart failure in α2A/α2c adrenoceptor KO mice. Journal of Molecular and Cellular Cardiology, 2007, 42, S145-S146.	0.9	0

#	Article	IF	CITATIONS
127	Low-dose Enalapril Reduces Angiotensin II and Attenuates Diabetic-induced Cardiac and Autonomic Dysfunctions. Journal of Cardiovascular Pharmacology, 2012, 59, 206.	0.8	0
128	40 anos da Pós-graduação da EEFE-USP: a sua contribuição para o avanço do conhecimento em biodinâmica do movimento humano. Revista Brasileira De Educação FÃsica E Esporte: RBEFE, 2017, 31, 155.	0.1	0
129	Epigenetic Regulation of Endothelial Function: With Focus on MicroRNAs. , 2018, , 171-187.		0
130	LOW-INTENSITY ENDURANCE TRAINING AND RIGHT VENTRICULAR MYOCYTES OF HYPERTENSIVE RATS. Revista Brasileira De Medicina Do Esporte, 2019, 25, 196-201.	0.1	0
131	A Landscape of Epigenetic Regulation by MicroRNAs to the Hallmarks of Cancer and Cachexia: Implications of Physical Activity to Tumor Regression. , 2019, , .		0
132	Noncoding RNAs in the Cardiovascular System: Exercise Training Effects. , 0, , .		0
133	High-volume endurance exercise training stimulates hematopoiesis by increasing ACE NH2-terminal activity. Clinical Science, 2021, 135, 2377-2391.	1.8	0
134	EFFECTS OF ANABOLIC STEROIDS ON CARDIAC HYPERTROPHY, HEMODYNAMIC RESPONSES AND ANGIOTENSIN CONVERTING ENZIME ACTIVITY IN EXERCISE TRAINED RATS. Journal of Hypertension, 2004, 22, S72.	0.3	0
135	EFFECTS OF ANABOLIC STEROIDS ON CARDIAC HYPERTROPHY AND CORONARY BLOOD FLOWN IN RATS SUBMETTED TO SWIMMING TRAINING. Journal of Hypertension, 2004, 22, S153.	0.3	0
136	Exercise Training Restores Muscle Mechano and Metaboreflex Sensitivity in Heart Failure Patients. FASEB Journal, 2013, 27, 712.1.	0.2	0
137	Circulating Ang II modulates the effects of exercise training on skeletal myopathy in heart failure (874.8). FASEB Journal, 2014, 28, 874.8.	0.2	0
138	microRNAâ€206 modulates important regulators of gene expression in response to aerobic exercise training in human skeletal muscle (706.3). FASEB Journal, 2014, 28, 706.3.	0.2	0
139	Exercise Training Reduces AngII and Increases Angâ€(1â€7) Concentration in Cardiac Muscle of CHF Rats. FASEB Journal, 2015, 29, 971.3.	0.2	0
140	Reninâ€Angiotensin System in Trained Hypertensive Women During Climacteric Period. FASEB Journal, 2015, 29, LB560.	0.2	0
141	Effect Of Aerobic Physical Training On The Expression Of Muscular Myomirs In Experimental Models Of Cancer., Medicine and Science in Sports and Exercise, 2018, 50, 645.	0.2	0