Ruth M Kluck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5794245/publications.pdf

Version: 2024-02-01

56 papers 7,748 citations

36 h-index 53 g-index

60 all docs

60 does citations

60 times ranked

7839 citing authors

#	Article	IF	CITATIONS
1	Ordering the Cytochrome c–initiated Caspase Cascade: Hierarchical Activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9–dependent Manner. Journal of Cell Biology, 1999, 144, 281-292.	2.3	1,745
2	Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science, 2007, 315, 856-859.	6.0	1,021
3	Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell, 2013, 152, 519-531.	13.5	491
4	Molecular biology of Bax and Bak activation and action. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 521-531.	1.9	415
5	Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death and Differentiation, 2014, 21, 196-205.	5.0	330
6	The Pro-Apoptotic Proteins, Bid and Bax, Cause a Limited Permeabilization of the Mitochondrial Outer Membrane That Is Enhanced by Cytosol. Journal of Cell Biology, 1999, 147, 809-822.	2.3	312
7	To Trigger Apoptosis, Bak Exposes Its BH3 Domain and Homodimerizes via BH3:Groove Interactions. Molecular Cell, 2008, 30, 369-380.	4.5	296
8	Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 2009, 122, 2801-2808.	1.2	283
9	Preservation of Mitochondrial Structure and Function after Bid- or Bax-Mediated Cytochrome c Release. Journal of Cell Biology, 2000, 150, 1027-1036.	2.3	229
10	Bak Activation for Apoptosis Involves Oligomerization of Dimers via Their $\hat{l}\pm 6$ Helices. Molecular Cell, 2009, 36, 696-703.	4.5	200
11	Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death and Differentiation, 2012, 19, 661-670.	5.0	161
12	Mitochondrial Release of Pro-apoptotic Proteins. Journal of Biological Chemistry, 2005, 280, 2266-2274.	1.6	154
13	Bak Core and Latch Domains Separate during Activation, and Freed Core Domains Form Symmetric Homodimers. Molecular Cell, 2014, 55, 938-946.	4.5	140
14	A Distinct Pathway of Cell-Mediated Apoptosis Initiated by Granulysin. Journal of Immunology, 2001, 167, 350-356.	0.4	128
15	Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4076-85.	3.3	111
16	VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9, 4976.	5.8	110
17	Determinants of Cytochrome c Pro-apoptotic Activity. Journal of Biological Chemistry, 2000, 275, 16127-16133.	1.6	109
18	Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. Journal of Cell Biology, 2007, 177, 277-287.	2.3	109

#	Article	IF	Citations
19	Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death and Differentiation, 2014, 21, 1925-1935.	5.0	106
20	Inhibition of Bak Activation by VDAC2 Is Dependent on the Bak Transmembrane Anchor. Journal of Biological Chemistry, 2010, 285, 36876-36883.	1.6	83
21	Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death and Disease, 2015, 6, e1735-e1735.	2.7	76
22	Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood, 2021, 137, 2721-2735.	0.6	75
23	The mitochondrial gateway to cell death. IUBMB Life, 2008, 60, 383-389.	1.5	67
24	Assembly of the Bak Apoptotic Pore. Journal of Biological Chemistry, 2013, 288, 26027-26038.	1.6	67
25	Disordered clusters of Bak dimers rupture mitochondria during apoptosis. ELife, 2017, 6, .	2.8	60
26	Pore formation by dimeric Bak and Bax: an unusual pore?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160218.	1.8	59
27	Calcium chelators induce apoptosis — evidence that raised intracellular ionised calcium is not essential for apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 247-254.	1.9	52
28	Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization. Cell Death and Differentiation, 2017, 24, 961-970.	5.0	52
29	Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Cell Death and Differentiation, 2015, 22, 1665-1675.	5.0	51
30	Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies. Nature Communications, 2016, 7, 11734.	5.8	50
31	Dissociation of Bak $\hat{l}\pm 1$ helix from the core and latch domains is required for apoptosis. Nature Communications, 2015, 6, 6841.	5.8	48
32	A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochemical Journal, 2002, 362, 749-754.	1.7	47
33	Translocation of a Bak C-Terminus Mutant from Cytosol to Mitochondria to Mediate Cytochrome c Release: Implications for Bak and Bax Apoptotic Function. PLoS ONE, 2012, 7, e31510.	1.1	46
34	A Single Cell Analysis of Apoptosis: Ordering the Apoptotic Phenotype. Annals of the New York Academy of Sciences, 2000, 926, 132-141.	1.8	44
35	Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death and Differentiation, 2018, 25, 721-734.	5.0	44
36	Physiological restraint of Bak by Bcl-x _L is essential for cell survival. Genes and Development, 2016, 30, 1240-1250.	2.7	40

#	Article	IF	Citations
37	A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochemical Journal, 2002, 362, 749.	1.7	39
38	Ensemble Properties of Bax Determine Its Function. Structure, 2018, 26, 1346-1359.e5.	1.6	34
39	Assaying Cytochrome c Translocation During Apoptosis. , 2004, 284, 307-314.		32
40	BAK $\hat{l}\pm 6$ permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7629-7634.	3.3	32
41	Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Cell Death and Disease, 2020, 11, 268.	2.7	27
42	Structure of detergent-activated BAK dimers derived from the inert monomer. Molecular Cell, 2021, 81, 2123-2134.e5.	4.5	26
43	MCMV-mediated Inhibition of the Pro-apoptotic Bak Protein Is Required for Optimal In Vivo Replication. PLoS Pathogens, 2013, 9, e1003192.	2.1	21
44	Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737. Cell Death and Disease, 2012, 3, e344-e344.	2.7	18
45	Rearrangement of Valproate Glucuronide in a Patient with Drugâ€Associated Hepatobiliary and Renal Dysfunction. Epilepsia, 1985, 26, 589-593.	2.6	16
46	BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death and Differentiation, 2022, 29, 1335-1348.	5.0	15
47	The <scp>BCL</scp> â€2 family member <scp>BID</scp> plays a role during embryonic development in addition to its <scp>BH3</scp> â€only protein function by acting in parallel to <scp>BAX</scp> , <scp>BAK</scp> and <scp>BOK</scp> . EMBO Journal, 2022, 41, .	3.5	15
48	Bcl-2 family-regulated apoptosis in health and disease. Cell Health and Cytoskeleton, 2010, , 9.	0.7	13
49	Spontaneous apoptosis in NS-1 myeloma cultures: Effects of cell density, conditioned medium and acid pH. Immunobiology, 1993, 188, 124-133.	0.8	12
50	Bak apoptotic function is not directly regulated by phosphorylation. Cell Death and Disease, 2013, 4, e452-e452.	2.7	12
51	A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. PLoS ONE, 2015, 10, e0134326.	1.1	11
52	Probing BAK and BAX Activation and Pore Assembly with Cytochrome c Release, Limited Proteolysis, and Oxidant-Induced Linkage. Methods in Molecular Biology, 2019, 1877, 201-216.	0.4	7
53	Structure of the BAK-activating antibody 7D10 bound to BAK reveals an unexpected role for the $\hat{l}\pm 1-\hat{l}\pm 2$ loop in BAK activation. Cell Death and Differentiation, 2022, 29, 1757-1768.	5.0	4
54	Avoiding adsorption of Bcl-2 proteins to plasticware is important for accurate quantitation. Cell Death and Differentiation, 2019, 26, 794-795.	5.0	2

РИТН М КLUCK

#	Article	IF	CITATIONS
55	"Radiochemically Pure [1-14C]Valproic Acidâ€â€"A Mixture of Labeled Structural Isomers. Therapeutic Drug Monitoring, 1986, 8, 462-465.	1.0	O
56	Structural Insights into Bak Activation and Oligomerisation. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1166-C1166.	0.0	0