Amir R Farkoosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579408/publications.pdf

Version: 2024-02-01

		933447	1281871
15	535	10	11
papers	citations	h-index	g-index
16	16	16	330
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 181-189.	5.6	119
2	Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design. Journal of Alloys and Compounds, 2013, 551, 596-606.	5 . 5	103
3	Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300°C: Effects of Mg and the Q-precipitate phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 621, 277-286.	5.6	87
4	Interaction between molybdenum and manganese to form effective dispersoids in an Al–Si–Cu–Mg alloy and their influence on creep resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 127-138.	5 . 6	73
5	The effects of manganese on the Îṃhase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 248-256.	5.6	38
6	Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al–Zr–Er–Si alloy. Acta Materialia, 2019, 181, 249-261.	7.9	35
7	The role of the Zn/Nd ratio in the microstructural evolution of the Mg-Zn-Nd system during static recrystallization: Grain boundary partitioning of solutes. Scripta Materialia, 2017, 134, 1-5.	5. 2	25
8	Effects of W and Si microadditions on microstructure and the strength of dilute precipitation-strengthened Al–Zr–Er alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140159.	5 . 6	17
9	Tungsten solubility in L12-ordered Al3Er and Al3Zr nanoprecipitates formed by aging in an aluminum matrix. Journal of Alloys and Compounds, 2020, 820, 153383.	5 . 5	16
10	Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy. Acta Materialia, 2021, 219, 117268.	7.9	15
11	High Temperature Creep Evolution in Al-Si Alloys Developed for Automotive Powertrain Applications: A Neutron In-Situ Study on hkl-Plane Creep Response. , 2016, , 131-136.		3
12	Microstructure and Mechanical Properties of an Al-Zr-Er High Temperature Alloy Microalloyed with Tungsten. Minerals, Metals and Materials Series, 2019, , 379-383.	0.4	1
13	An integrated model for prediction of thermo-mechanical behaviour of metal and work-rolls during hot strip rolling process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223, 395-407.	2.4	0
14	The Role of the Nd/Zn Ratio on the Stability of Mg-Zn-Nd Clusters and the Evolution of Texture in Two Mg-Zn-Nd Alloys during Annealing. Materials Science Forum, 2016, 879, 542-547.	0.3	0
15	Microstructure and Mechanical Properties of a Precipitation-Hardened Al–Mn–Zr–Er Alloy. Minerals, Metals and Materials Series, 2021, , 239-244.	0.4	O