
Van-Tuan Vu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5793723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmospheric Chemistry and Physics, 2019, 19, 11303-11314.	1.9	215
2	Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances, 2021, 7, .	4.7	209
3	Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmospheric Environment, 2015, 122, 114-132.	1.9	179
4	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)â€. Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	1.9	95
5	Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 2018, 189, 187-212.	1.9	85
6	Significant Changes in Chemistry of Fine Particles in Wintertime Beijing from 2007 to 2017: Impact of Clean Air Actions. Environmental Science & Technology, 2020, 54, 1344-1352.	4.6	84
7	Physical properties and lung deposition of particles emitted from five major indoor sources. Air Quality, Atmosphere and Health, 2017, 10, 1-14.	1.5	75
8	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	1.9	64
9	More mileage in reducing urban air pollution from road traffic. Environment International, 2021, 149, 106329.	4.8	62
10	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	1.9	62
11	Sources, Distribution and Toxicity of Polyaromatic Hydrocarbons (PAHs) in Particulate Matter. , 0, , .		55
12	Assessment of carcinogenic risk due to inhalation of polycyclic aromatic hydrocarbons in PM10 from an industrial city: A Korean case-study. Journal of Hazardous Materials, 2011, 189, 349-356.	6.5	52
13	Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	51
14	A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Quality, Atmosphere and Health, 2015, 8, 429-440.	1.5	43
15	Sources of sub-micrometre particles near aÂmajor international airport. Atmospheric Chemistry and Physics, 2017, 17, 12379-12403.	1.9	43
16	Atmospheric conditions and composition that influence PM _{2.5} oxidative potential in Beijing, China. Atmospheric Chemistry and Physics, 2021, 21, 5549-5573.	1.9	38
17	Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy). Atmospheric Environment, 2016, 139, 56-74.	1.9	35
18	Insight into PM _{2.5} sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing. Atmospheric Chemistry and Physics, 2021, 21, 14703-14724.	1.9	35

Van-Tuan Vu

#	Article	IF	CITATIONS
19	Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China. Atmospheric Environment, 2019, 202, 244-255.	1.9	28
20	Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model. Atmospheric Chemistry and Physics, 2021, 21, 7321-7341.	1.9	23
21	The effects of meteorological conditions and long-range transport on PM2.5 levels in Hanoi revealed from multi-site measurement using compact sensors and machine learning approach. Journal of Aerosol Science, 2021, 152, 105716.	1.8	22
22	Source apportionment of fine organic carbon (OC) using receptor modelling at a rural site of Beijing: Insight into seasonal and diurnal variation of source contributions. Environmental Pollution, 2020, 266, 115078.	3.7	19
23	Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites. Atmospheric Chemistry and Physics, 2021, 21, 8273-8292.	1.9	15
24	Differences in the composition of organic aerosols between winter and summer in Beijing: a study by direct-infusion ultrahigh-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 13303-13318.	1.9	15
25	Factors controlling the lung dose of road traffic-generated sub-micrometre aerosols from outdoor to indoor environments. Air Quality, Atmosphere and Health, 2018, 11, 615-625.	1.5	14
26	Source Apportionment of the Lung Dose of Ambient Submicrometre Particulate Matter. Aerosol and Air Quality Research, 2016, 16, 1548-1557.	0.9	13
27	Long-term characterization of roadside air pollutants in urban Beijing and associated public health implications. Environmental Research, 2022, 212, 113277.	3.7	13
28	Insight into the composition of organic compounds ( ≥  C _{6PM_{2.5} in wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10865-10881.}	amp;gt;) i 1.9	n 12
29	Chemical Composition and Source Apportionment of PM2.5 in Urban Areas of Xiangtan, Central South China. International Journal of Environmental Research and Public Health, 2019, 16, 539.	1.2	12
30	An evaluation of source apportionment of fine OC and PM _{2.5} by multiple methods: APHH-Beijing campaigns as a case study. Faraday Discussions, 2021, 226, 290-313.	1.6	12
31	Assessing the contributions of outdoor and indoor sources to air quality in London homes of the SCAMP cohort. Building and Environment, 2022, 222, 109359.	3.0	12
32	A Review of Characteristics, Causes, and Formation Mechanisms of Haze in Southeast Asia. Current Pollution Reports, 2022, 8, 201-220.	3.1	10
33	Loss processes affecting submicrometer particles in a house heavily affected by road traffic emissions. Aerosol Science and Technology, 2017, 51, 1201-1211.	1.5	9
34	Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discussions, 2021, 226, 223-238.	1.6	9
35	Estimation of hygroscopic growth properties of source-related sub-micrometre particle types in a mixed urban aerosol. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	7
36	Assessing the Impact of Traffic Emissions on Fine Particulate Matter and Carbon Monoxide Levels in Hanoi through COVID-19 Social Distancing Periods. Aerosol and Air Quality Research, 2021, 21, 210081.	0.9	5

#	Article	IF	CITATIONS
37	Chemical and Physical Properties of Indoor Aerosols. Issues in Environmental Science and Technology, 2019, , 66-96.	0.4	5
38	A study on characteristics of organic carbon and polycyclic aromatic hydrocarbons (PAHs) in PM<-inf>-10<-/inf>- at the residential and industrial areas in Ulsan of Korea 2010		2

38 PM<inf>10</inf> at the residential and industrial areas in Ulsan of Korea. , 2010, , .

4