
Fernando Gabriel Chirdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5793644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation Is Present, Persistent and More Sensitive to Proinflammatory Triggers in Celiac Disease Enterocytes. International Journal of Molecular Sciences, 2022, 23, 1973.	1.8	18
2	Sterile inflammation drives multiple programmed cell death pathways in the gut. Journal of Leukocyte Biology, 2021, 109, 211-221.	1.5	5
3	The gliadin p31–43 peptide: Inducer of multiple proinflammatory effects. International Review of Cell and Molecular Biology, 2021, 358, 165-205.	1.6	19
4	Programmed Cell Death in the Small Intestine: Implications for the Pathogenesis of Celiac Disease. International Journal of Molecular Sciences, 2021, 22, 7426.	1.8	11
5	Structural conformation and selfâ€assembly process of p31â€43 gliadin peptide in aqueous solution. Implications for celiac disease. FEBS Journal, 2020, 287, 2134-2149.	2.2	18
6	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	1.6	34
7	p31-43 Gliadin Peptide Forms Oligomers and Induces NLRP3 Inflammasome/Caspase 1- Dependent Mucosal Damage in Small Intestine. Frontiers in Immunology, 2019, 10, 31.	2.2	45
8	Commentary: p31-43 Gliadin Peptide Forms Oligomers and Induces NLRP3 Inflammasome/Caspase 1- Dependent Mucosal Damage in Small Intestine. Frontiers in Immunology, 2019, 10, 2792.	2.2	5
9	Mechanisms of innate immune activation by gluten peptide p31-43 in mice. American Journal of Physiology - Renal Physiology, 2016, 311, G40-G49.	1.6	47
10	A galectinâ€specific signature in the gut delineates <scp>C</scp> rohn's disease and ulcerative colitis from other human inflammatory intestinal disorders. BioFactors, 2016, 42, 93-105.	2.6	34
11	Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum. Nutrients, 2015, 7, 8960-8976.	1.7	10
12	Production of the Main Celiac Disease Autoantigen by Transient Expression in Nicotiana benthamiana. Frontiers in Plant Science, 2015, 6, 1067.	1.7	6
13	Intestinal Microbiota Modulates Gluten-Induced Immunopathology in Humanized Mice. American Journal of Pathology, 2015, 185, 2969-2982.	1.9	106
14	Role of CXCR3/CXCL10 Axis in Immune Cell Recruitment into the Small Intestine in Celiac Disease. PLoS ONE, 2014, 9, e89068.	1.1	83
15	THEMIS and PTPRK in celiac intestinal mucosa: coexpression in disease and after in vitro gliadin challenge. European Journal of Human Genetics, 2014, 22, 358-362.	1.4	27
16	Intraluminal Administration of Poly I:C Causes an Enteropathy That Is Exacerbated by Administration of Oral Dietary Antigen. PLoS ONE, 2014, 9, e99236.	1.1	37
17	Broad MICA/B Expression in the Small Bowel Mucosa: A Link between Cellular Stress and Celiac Disease. PLoS ONE, 2013, 8, e73658.	1.1	28
18	Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine. Clinical and Experimental Immunology, 2012, 168, 95-104.	1.1	38

#	Article	IF	CITATIONS
19	Sensitization to Gliadin Induces Moderate Enteropathy and Insulitis in Nonobese Diabetic-DQ8 Mice. Journal of Immunology, 2011, 187, 4338-4346.	0.4	62
20	Analysis of immune cells draining from the abdominal cavity as a novel tool to study intestinal transplant immunobiology. Clinical and Experimental Immunology, 2010, 162, 138-145.	1.1	8
21	Single Domain Antibodies Are Specially Suited for Quantitative Determination of Gliadins under Denaturing Conditions. Journal of Agricultural and Food Chemistry, 2010, 58, 918-926.	2.4	28
22	Evaluation of Calprotectin Level in Intestinal Content as an Early Marker for Graft Rejection. Transplantation Proceedings, 2010, 42, 57-61.	0.3	20
23	Mucosal tissue transglutaminase expression in celiac disease. Journal of Cellular and Molecular Medicine, 2009, 13, 334-340.	1.6	20
24	Higher constitutive IL15Rα expression and lower IL-15 response threshold in coeliac disease patients. Clinical and Experimental Immunology, 2008, 154, 64-73.	1.1	62
25	Celiac Disease Pathogenesis: The Proinflammatory Cytokine Network. Journal of Pediatric Gastroenterology and Nutrition, 2008, 47, S27-32.	0.9	80
26	Deamidated Gliadin Peptides Form Epitopes That Transglutaminase Antibodies Recognize. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46, 253-261.	0.9	42
27	Towards a new gliadin reference material–isolation and characterisation. Journal of Cereal Science, 2006, 43, 331-341.	1.8	169
28	Immunomodulatory dendritic cells in intestinal lamina propria. European Journal of Immunology, 2005, 35, 1831-1840.	1.6	212
29	Characterizing monoclonal antibody epitopes by filtered gene fragment phage display. Biochemical Journal, 2005, 388, 889-894.	1.7	37
30	Immunochemical reactivity of soybean β-conglycinin subunits. Food and Agricultural Immunology, 2005, 16, 17-28.	0.7	10
31	Oral Tolerance: Overview and Historical Perspectives. Annals of the New York Academy of Sciences, 2004, 1029, 1-8.	1.8	91
32	Whole-bacterial cell enzyme-linked immunosorbent assay for cell-bound Moraxella bovis pili. Veterinary Microbiology, 2003, 91, 157-168.	0.8	18
33	Evaluation of coeliac disease serological markers in Down syndrome patients. Digestive and Liver Disease, 2002, 34, 116-121.	0.4	18
34	In vitro presentation of gliadin-derived peptides by different cell lines. Clinica Chimica Acta, 2002, 317, 151-158.	0.5	6
35	Fractionation of secalins and hordeins by preparative electrophoresis at acid pH. European Food Research and Technology, 2002, 214, 198-201.	1.6	1
36	Analysis of the Effects of Heat Treatment on Gliadin Immunochemical Quantification Using a Panel of Anti-prolamin Antibodies. Journal of Agricultural and Food Chemistry, 2001, 49, 5719-5726.	2.4	24

#	Article	IF	CITATIONS
37	Determination of Anti-?-Gliadin Antibodies in Serologic Tests for Coeliac Disease. Scandinavian Journal of Gastroenterology, 2000, 35, 508-516.	0.6	7
38	Analysis of Anti-Prolamin Monoclonal Antibody Reactivity Using Prolamin Fractions Purified by Preparative Electrophoresis. Food and Agricultural Immunology, 2000, 12, 41-52.	0.7	6
39	Preparative Fractionation of Cliadins by Electrophoresis at pH 3.1 (A-PAGE). Journal of Agricultural and Food Chemistry, 1999, 47, 3243-3247.	2.4	17
40	Analysis of Anti-Gliadin Antibodies by Immunoblot Analysis and Enzyme-Linked Immunosorbent Assay Using Gliadin Fractions As Antigens. Journal of Pediatric Gastroenterology and Nutrition, 1999, 29, 171-177.	0.9	6
41	Detection and characterization of antibodies specific to food antigens (gliadin, ovalbumin and) Tj ETQq1 1 0.784 1998, 112, 453-458.	314 rgBT / 1.1	Overlock 10 21
42	An innovative sandwich ELISA system based on an antibody cocktail for gluten analysis. FEBS Letters, 1998, 439, 46-50.	1.3	71
43	Presence of High Levels of Non-Degraded Gliadin in Breast Milk from Healthy Mothers. Scandinavian Journal of Gastroenterology, 1998, 33, 1186-1192.	0.6	64
44	Development of highâ€sensitive enzyme immunoassays for gliadin quantification using the streptavidinâ€biotin amplification system. Food and Agricultural Immunology, 1998, 10, 143-155.	0.7	21
45	Immunoblotting of gliadins separated by acid PAGE: Analysis of electrotransference conditions. Food and Agricultural Immunology, 1997, 9, 135-139.	0.7	3
46	Analysis of Structural Properties and Immunochemical Reactivity of Heat-Treated Ovalbumin. Journal of Agricultural and Food Chemistry, 1996, 44, 3793-3798.	2.4	31
47	Identification of casein as the major allergenic and antigenic protein of cow's milk. Allergy: European Journal of Allergy and Clinical Immunology, 1996, 51, 412-416.	2.7	175
48	Influence of thermal treatment of food on the immunochemical quantification of Gliadin. Food and Agricultural Immunology, 1996, 8, 195-203.	0.7	16
49	Quantitation of Adenylate Cyclase ofBordetella pertussisby Enzyme Linked Immunosorbent Assay. Biologicals, 1995, 23, 279-284.	0.5	3
50	Optimization of a competitive ELISA with polyclonal antibodies for quantification of prolamins in foods. Food and Agricultural Immunology, 1995, 7, 333-343.	0.7	47
51	METACHROMATIC EFFECT IN HOMOLOGOUS GROUPS OF WHEAT, BARLEY AND RYE PROLAMINS. Journal of Food Biochemistry, 1994, 18, 185-197.	1.2	1
52	Fractionation of Wheat, Barley, and Rye Prolamins by Cation Exchange FPLC. Journal of Agricultural and Food Chemistry, 1994, 42, 2460-2465.	2.4	6