Jun-Peng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5793365/publications.pdf

Version: 2024-02-01

		159573	1	75241	
80	2,857	30		52	
papers	citations	h-index		g-index	
82	82	82		5031	
02	02	02		3031	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Atomic Healing of Defects in Transition Metal Dichalcogenides. Nano Letters, 2015, 15, 3524-3532.	9.1	194
2	Defect Engineering for Modulating the Trap States in 2D Photoconductors. Advanced Materials, 2018, 30, e1804332.	21.0	146
3	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	6.7	132
4	Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano, 2015, 9, 10411-10421.	14.6	126
5	Engineering Bandgaps of Monolayer MoS ₂ and WS ₂ on Fluoropolymer Substrates by Electrostatically Tuned Manyâ€Body Effects. Advanced Materials, 2016, 28, 6457-6464.	21.0	116
6	Microlandscaping of Au Nanoparticles on Few-Layer MoS < sub> $2 < \text{sub}> \text{Films}$ for Chemical Sensing. Small, 2015, 11, 1792-1800.	10.0	113
7	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	14.6	112
8	Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research, 2019, 2019, 4641739.	5.7	101
9	Light–Matter Interactions in Phosphorene. Accounts of Chemical Research, 2016, 49, 1806-1815.	15.6	97
10	Hybrid Bilayer WSe ₂ â€"CH ₃ NH ₃ PbI ₃ Organolead Halide Perovskite as a Highâ€Performance Photodetector. Angewandte Chemie - International Edition, 2016, 55, 11945-11949.	13.8	91
11	Metamaterials based on the phase transition of VO ₂ . Nanotechnology, 2018, 29, 024002.	2.6	90
12	Defect Activated Photoluminescence in WSe ₂ Monolayer. Journal of Physical Chemistry C, 2017, 121, 12294-12299.	3.1	83
13	Fluorescence Concentric Triangles: A Case of Chemical Heterogeneity in WS ₂ Atomic Monolayer. Nano Letters, 2016, 16, 5559-5567.	9.1	76
14	High-performance position-sensitive detector based on graphene–silicon heterojunction. Optica, 2018, 5, 27.	9.3	63
15	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie - International Edition, 2020, 59, 8270-8276.	13.8	63
16	Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45, 2494-2515.	38.1	61
17	Graphene-Based Infrared Position-Sensitive Detector for Precise Measurements and High-Speed Trajectory Tracking. Nano Letters, 2019, 19, 8132-8137.	9.1	52
18	Hybrid Bilayer WSe ₂ â€"CH ₃ NH ₃ PbI ₃ Organolead Halide Perovskite as a Highâ€Performance Photodetector. Angewandte Chemie, 2016, 128, 12124-12128.	2.0	51

#	Article	IF	Citations
19	How defects influence the photoluminescence of TMDCs. Nano Research, 2021, 14, 29-39.	10.4	51
20	Gateâ€Tunable Polar Optical Phonon to Piezoelectric Scattering in Fewâ€Layer Bi ₂ O ₂ Se for Highâ€Performance Thermoelectrics. Advanced Materials, 2021, 33, e2004786.	21.0	48
21	Fast Photoelectric Conversion in the Nearâ€Infrared Enabled by Plasmonâ€Induced Hotâ€Electron Transfer. Advanced Materials, 2019, 31, e1903829.	21.0	44
22	Microsteganography on WS ₂ Monolayers Tailored by Direct Laser Painting. ACS Nano, 2017, 11, 713-720.	14.6	43
23	Abnormal Nearâ€Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization. Advanced Materials, 2018, 30, e1801931.	21.0	43
24	Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO ₂ nanowires. Nanoscale, 2014, 6, 7619-7627.	5.6	42
25	High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nature Communications, 2022, 13, .	12.8	41
26	The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS ₂ . Nano Letters, 2019, 19, 4641-4650.	9.1	39
27	Enhanced Photoresponse from Phosphorene–Phosphoreneâ€Suboxide Junction Fashioned by Focused Laser Micromachining. Advanced Materials, 2016, 28, 4090-4096.	21.0	38
28	Layer-number dependent and structural defect related optical properties of InSe. RSC Advances, 2017, 7, 54964-54968.	3.6	36
29	Sulfurâ€Mastery: Precise Synthesis of 2D Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1809261.	14.9	36
30	Ultrasensitive Phototransistor Based on K-Enriched MoO ₃ Single Nanowires. Journal of Physical Chemistry C, 2012, 116, 22015-22020.	3.1	34
31	Defect Heterogeneity in Monolayer WS ₂ Unveiled by Work Function Variance. Chemistry of Materials, 2019, 31, 7970-7978.	6.7	31
32	Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Science China Information Sciences, 2021, 64, 1.	4.3	31
33	Optical and electrical applications of ZnSxSe1â^'x nanowires-network with uniform and controllable stoichiometry. Nanoscale, 2012, 4, 976.	5.6	28
34	Thermal transport and energy dissipation in two-dimensional Bi2O2Se. Applied Physics Letters, 2019, 115, .	3.3	28
35	Direct Laser Pruning of CdSxSe1–x Nanobelts en Route to a Multicolored Pattern with Controlled Functionalities. ACS Nano, 2012, 6, 8298-8307.	14.6	24
36	Defect Engineering in CdS _{<i>x</i>} Se _{1â€"<i>x</i>} Nanobelts: An Insight into Carrier Relaxation Dynamics via Optical Pumpâ€"Terahertz Probe Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26036-26042.	3.1	23

#	Article	IF	CITATIONS
37	Composition-dependent ultra-high photoconductivity in ternary CdS x Se1â^x nanobelts as measured by optical pump-terahertz probe spectroscopy. Nano Research, 2013, 6, 808-821.	10.4	23
38	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8518-8527.	8.0	23
39	A critical review on the carrier dynamics in 2D layered materials investigated using THz spectroscopy. Optics Communications, 2018, 406, 24-35.	2.1	22
40	Negative terahertz photoconductivity in 2D layered materials. Nanotechnology, 2017, 28, 464001.	2.6	21
41	Photocurrent Response in Multiwalled Carbon Nanotube Core–Molybdenum Disulfide Shell Heterostructures. Journal of Physical Chemistry C, 2015, 119, 24588-24596.	3.1	20
42	One-dimensional nanostructures of Il–VI ternary alloys: synthesis, optical properties, and applications. Nanoscale, 2018, 10, 17456-17476.	5.6	20
43	Behavior and Modeling of Ultra-High Performance Concrete-Filled FRP Tubes Under Cyclic Axial Compression. Journal of Composites for Construction, 2020, 24, .	3.2	20
44	Ultrasensitive grapheneâ€Si positionâ€sensitive detector for motion tracking. InformaÄnÃ-Materiály, 2020, 2, 761-768.	17.3	20
45	Transient Photoconductivity of Ternary CdSSe Nanobelts As Measured by Time-Resolved Terahertz Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 12379-12384.	3.1	18
46	Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Frontiers of Physics, 2018, 13, 1.	5.0	17
47	Ultrahigh photoconductivity of bandgap-graded CdSxSe1â^x nanowires probed by terahertz spectroscopy. Scientific Reports, 2016, 6, 27387.	3.3	15
48	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie, 2020, 132, 8347-8353.	2.0	15
49	Exciton dynamics in tungsten dichalcogenide monolayers. Physical Chemistry Chemical Physics, 2017, 19, 17877-17882.	2.8	14
50	Position-sensitive detectors based on two-dimensional materials. Nano Research, 2021, 14, 1889-1900.	10.4	14
51	Defect-related dynamics of photoexcited carriers in 2D transition metal dichalcogenides. Physical Chemistry Chemical Physics, 2021, 23, 8222-8235.	2.8	13
52	High-Performance Graphene-Based Electrostatic Field Sensor. IEEE Electron Device Letters, 2017, 38, 1136-1138.	3.9	12
53	Temperature and composition dependence of photoluminescence dynamics in CdSxSe1â^'x (0 â‰â€‰xâ€' nanobelts. Journal of Applied Physics, 2012, 111, 073112.	‰â‰â€% 2.5	501) 11
54	Direct visualization of irreducible ferrielectricity in crystals. Npj Quantum Materials, 2020, 5, .	5.2	9

#	Article	IF	CITATIONS
55	Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 026802.	0.5	9
56	Controllable n-type doping in WSe2 monolayer via construction of anion vacancies. Chinese Chemical Letters, 2021, 32, 3118-3122.	9.0	9
57	Composition-dependent electron transport in CdS_xSe_1â^'x nanobelts: a THz spectroscopy study. Optics Letters, 2014, 39, 567.	3.3	8
58	Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction. Scientific Reports, 2015, 4, 6350.	3.3	8
59	A Focused Laser Beam: A Useful and Versatile Tool for 1D Nanomaterials Research: A Review. Journal of Materials Science and Technology, 2015, 31, 616-629.	10.7	8
60	Enriched Fluorescence Emission from WS ₂ Monoflake Empowered by Au Nanoexplorers. Advanced Optical Materials, 2017, 5, 1700156.	7.3	7
61	Excitonic Emission in Atomically Thin Electroluminescent Devices. Laser and Photonics Reviews, 2021, 15, 2000587.	8.7	7
62	Tunable self-trapped excitons in 2D layered rubrene. Applied Physics Letters, 2021, 118, .	3.3	7
63	The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS ₂ Monolayers. Advanced Functional Materials, 2021, 31, 2103140.	14.9	7
64	Multispectral photodetectors based on 2D material/Cs ₃ Bi ₂ I ₉ heterostructures with high detectivity. Nanotechnology, 2021, 32, 415202.	2.6	7
65	Spectroscopic Perception of Trap States on the Performance of Methylammonium and Formamidinium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2021, 33, 2102241.	21.0	7
66	Competition between Oxygen Curing and Ion Migration in MAPbI ₃ Induced by Irradiation Exposure. Journal of Physical Chemistry Letters, 2020, 11, 8477-8482.	4.6	5
67	Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping. Chinese Chemical Letters, 2022, 33, 368-373.	9.0	5
68	Correlated Dynamics of Free and Selfâ€Trapped Excitons and Broadband Photodetection in BEA ₂ PbBr ₄ Layered Crystals. Advanced Optical Materials, 2022, 10, .	7. 3	5
69	Phosphorene: Enhanced Photoresponse from Phosphorene–Phosphoreneâ€6uboxide Junction Fashioned by Focused Laser Micromachining (Adv. Mater. 21/2016). Advanced Materials, 2016, 28, 4164-4164.	21.0	4
70	Ultrasensitive graphene position-sensitive detector induced by synergistic effects of charge injection and interfacial gating. Nanophotonics, 2020, 9, 2531-2536.	6.0	4
71	Potassium Iodide Doping Strategy for High-Efficiency Perovskite Solar Cells Revealed by Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 711-717.	4.6	3
72	Resonance Raman scattering on graded-composition W <i>x</i> Mo1â€" <i>x</i> S2 alloy with tunable excitons. Applied Physics Letters, 2022, 120, .	3.3	3

#	Article	IF	CITATIONS
73	Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window. Chinese Physics Letters, 2022, 39, 058501.	3.3	3
74	Modulation of THz radiation via enhanced Dirac plasmon-dual phonon interaction. Applied Physics Letters, 2019, 115, .	3.3	2
75	Photoluminesence enhancement at high generation rate induced by exciton localization. Optics Letters, 2021, 46, 2774-2777.	3.3	2
76	Thermoelectric Materials: Gateâ€Tunable Polar Optical Phonon to Piezoelectric Scattering in Fewâ€Layer Bi _{O₂Se for Highâ€Performance Thermoelectrics (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170023.}	21.0	1
77	The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS ₂ Monolayers (Adv.) Tj ETQo	111.9.784	13 ₁ 4 rgBT /C
78	2D Materials: Enriched Fluorescence Emission from WS ₂ Monoflake Empowered by Au Nanoexplorers (Advanced Optical Materials 14/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
79	Black Phosphorus: Abnormal Near-Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870325.	21.0	0
80	Aggregationâ€Dependent Dielectric Permittivity in 2D Molecular Crystals. Small Methods, 2022, , 2101198.	8.6	0