Sherry L Voytik-Harbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579283/publications.pdf

Version: 2024-02-01

331670 254184 2,797 49 21 43 citations g-index h-index papers 49 49 49 3937 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Eliciting and Characterizing Porcine Vocalizations: When Pigs Fly. Journal of Voice, 2022, , .	1.5	O
2	Laryngeal Reconstruction Using Tissueâ€Engineered Implants in Pigs: A Pilot Study. Laryngoscope, 2021, 131, 2277-2284.	2.0	10
3	Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs. Scientific Reports, 2021, 11, 2711.	3.3	15
4	Mechanobiological wound model for improved design and evaluation of collagen dermal replacement scaffolds. Acta Biomaterialia, 2021, 135, 368-382.	8.3	11
5	Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 859-868.	4.6	33
6	Oligomeric collagen as an encapsulation material for islet/ \hat{l}^2 -cell replacement: effect of islet source, dose, implant site, and administration format. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E388-E400.	3.5	6
7	Design and biofabrication of dermal regeneration scaffolds: role of oligomeric collagen fibril density and architecture. Regenerative Medicine, 2020, 15, 1295-1312.	1.7	11
8	Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 203-245.	1.0	5
9	YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. Journal of Cell Biology, 2019, 218, 1369-1389.	5.2	115
10	Motor endplateâ€expressing cartilageâ€muscle implants for reconstruction of a denervated hemilarynx. Laryngoscope, 2019, 129, 1293-1300.	2.0	10
11	Use of autologous adiposeâ€derived mesenchymal stem cells for creation of laryngeal cartilage. Laryngoscope, 2018, 128, E123-E129.	2.0	14
12	Threeâ€dimensional tissueâ€engineered skeletal muscle for laryngeal reconstruction. Laryngoscope, 2018, 128, 603-609.	2.0	16
13	Development of a Novel 3D Tumor-tissue Invasion Model for High-throughput, High-content Phenotypic Drug Screening. Scientific Reports, 2018, 8, 13039.	3.3	56
14	In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E650-E661.	3.5	30
15	Presence of stromal cells in a bioengineered tumor microenvironment alters glioblastoma migration and response to STAT3 inhibition. PLoS ONE, 2018, 13, e0194183.	2.5	31
16	Murine ultrasound-guided transabdominal para-aortic injections of self-assembling type I collagen oligomers. Journal of Controlled Release, 2017, 249, 53-62.	9.9	11
17	3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT. PLoS ONE, 2017, 12, e0188870.	2.5	59
18	Microstructures: Mechanisms and Microenvironment Investigation of Cellularized High Density Gradient Collagen Matrices via Densification (Adv. Funct. Mater. 16/2016). Advanced Functional Materials, 2016, 26, 2772-2772.	14.9	0

#	Article	IF	CITATIONS
19	Mechanisms and Microenvironment Investigation of Cellularized High Density Gradient Collagen Matrices via Densification. Advanced Functional Materials, 2016, 26, 2617-2628.	14.9	40
20	Collagen-fibril matrix properties modulate the kinetics of silica polycondensation to template and direct biomineralization. Journal of Materials Research, 2016, 31, 311-320.	2.6	1
21	Dissociated and Reconstituted Cartilage Microparticles in Densified Collagen Induce Local hMSC Differentiation. Advanced Functional Materials, 2016, 26, 5427-5436.	14.9	22
22	Decellularized Cartilage Microparticles: Dissociated and Reconstituted Cartilage Microparticles in Densified Collagen Induce Local hMSC Differentiation (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5426-5426.	14.9	0
23	In Vitro Multitissue Interface Model Supports Rapid Vasculogenesis and Mechanistic Study of Vascularization across Tissue Compartments. ACS Applied Materials & Interfaces, 2016, 8, 21848-21860.	8.0	14
24	Acellular and cellular high-density, collagen-fibril constructs with suprafibrillar organization. Biomaterials Science, 2016, 4, 711-723.	5.4	32
25	Abstract 168: YAP and TAZ Mediate Mechanical Control of Vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	O
26	Microstructural Parameter-Based Modeling for Transport Properties of Collagen Matrices. Journal of Biomechanical Engineering, 2015, 137, 061003.	1.3	7
27	Notch ligand Delta-like 1 promotes inÂvivo vasculogenesis in human cord blood–derived endothelial colony forming cells. Cytotherapy, 2015, 17, 579-592.	0.7	24
28	Human platelet lysate improves human cord blood derived ECFC survival and vasculogenesis in three dimensional (3D) collagen matrices. Microvascular Research, 2015, 101, 72-81.	2.5	28
29	Extracellular Matrix Properties Regulate the Migratory Response of Glioblastoma Stem Cells in Three-Dimensional Culture. Tissue Engineering - Part A, 2015, 21, 2572-2582.	3.1	58
30	Organic Hydrogel Templates for Tunable Mesoporous Silica Hybrid Materials. Materials Research Society Symposia Proceedings, 2015, 1721, 1.	0.1	1
31	Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts. Journal of Immunological Methods, 2015, 425, 108-113.	1.4	22
32	Cell encapsulation in a magnetically aligned collagen–GAG copolymer microenvironment. Acta Biomaterialia, 2015, 11, 274-282.	8.3	30
33	Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells. Biochemical and Biophysical Research Communications, 2014, 443, 1280-1285.	2.1	6
34	Angiopoietin-like protein 2 regulates endothelial colony forming cell vasculogenesis. Angiogenesis, 2014, 17, 675-683.	7.2	22
35	Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells. Nature Biotechnology, 2014, 32, 1151-1157.	17.5	203
36	Collagen-Polymer Guidance of Vessel Network Formation and Stabilization by Endothelial Colony Forming Cells In Vitro. Macromolecular Bioscience, 2013, 13, 1135-1149.	4.1	33

#	Article	lF	CITATIONS
37	Oligomers Modulate Interfibril Branching and Mass Transport Properties of Collagen Matrices. Microscopy and Microanalysis, 2013, 19, 1323-1333.	0.4	15
38	Establishing epithelial glandular polarity: interlinked roles for ARF6, Rac1, and the matrix microenvironment. Molecular Biology of the Cell, 2012, 23, 4495-4505.	2.1	22
39	Designing a nerve tissue scaffold of tunable stiffness from natural biomaterials. , 2011, , .		0
40	Simultaneous Mechanical Loading and Confocal Reflection Microscopy for Three-Dimensional Microbiomechanical Analysis of Biomaterials and Tissue Constructs. Microscopy and Microanalysis, 2003, 9, 74-85.	0.4	63
41	Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure. Journal of Biomechanical Engineering, 2002, 124, 214-222.	1.3	541
42	Chapter 27 Three-dimensional imaging of extracellular matrix and extracellular matrix-cell interactions. Methods in Cell Biology, 2001, 63, 583-597.	1.1	46
43	Improved islet survival and in vitro function using solubilized small intestinal submucosa. Cell and Tissue Banking, 2001, 2, 217-224.	1.1	18
44	Application and evaluation of the alamarblue assay for cell growth and survival of fibroblasts. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 239-246.	1.5	130
45	Small Intestinal Submucosa: A Tissue-Derived Extracellular Matrix That Promotes Tissue-Specific Growth and Differentiation of Cells in Vitro. Tissue Engineering, 1998, 4, 157-174.	4.6	135
46	Identification of extractable growth factors from small intestinal submucosa. Journal of Cellular Biochemistry, 1997, 67, 478-491.	2.6	545
47	Identification of extractable growth factors from small intestinal submucosa., 1997, 67, 478.		1
48	Identification of extractable growth factors from small intestinal submucosa. Journal of Cellular Biochemistry, 1997, 67, 478-491.	2.6	18
49	Glycosaminoglycan Content of Small Intestinal Submucosa: A Bioscaffold for Tissue Replacement. Tissue Engineering, 1996, 2, 209-217.	4.6	287