
Jinhan Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5792549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chargeâ€Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2022, 32, 2106438.	7.8	9
2	Intrinsically Stretchable and Printable Lithium-Ion Battery for Free-Form Configuration. ACS Nano, 2022, 16, 2271-2281.	7.3	19
3	Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode Materials for Improved Cyclic Stability and Rate Capability. ACS Applied Energy Materials, 2022, 5, 4808-4816.	2.5	4
4	Selective Anticancer Materials by Self-Assembly of Synthetic Amphiphiles Based on <i>N</i> -Acetylneuraminic Acid. ACS Applied Materials & Interfaces, 2022, 14, 16100-16107.	4.0	6
5	High-performance hybrid biofuel cells using amphiphilic assembly based enzyme electrodes. Applied Physics Reviews, 2022, 9, .	5.5	4
6	Discovery of Dualâ€Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Li–S Batteries. Advanced Science, 2022, 9, .	5.6	9
7	Anisotropic Alignment of Bacterial Nanocellulose Ionogels for Unconventionally High Combination of Stiffness and Damping. ACS Applied Materials & amp; Interfaces, 2022, 14, 30056-30066.	4.0	5
8	A carbonization/interfacial assembly-driven electroplating approach for water-splitting textile electrodes with remarkably low overpotentials and high operational stability. Energy and Environmental Science, 2022, 15, 3815-3829.	15.6	23
9	Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chemical Society Reviews, 2021, 50, 3585-3628.	18.7	32
10	High-capacity sulfur copolymer cathode with metallic fibril-based current collector and conductive capping layer. Journal of Materials Chemistry A, 2021, 9, 2334-2344.	5.2	4
11	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	10.2	16
12	Aluminum textile-based binder-free nanostructured battery cathodes using a layer-by-layer assembly of metal/metal oxide nanoparticles. Applied Physics Reviews, 2021, 8, .	5.5	12
13	A Layerâ€byâ€Layer Assembly Route to Electroplated Fibrilâ€Based 3D Porous Current Collectors for Energy Storage Devices. Small, 2021, 17, e2007579.	5.2	13
14	Layerâ€byâ€Layer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÂAÂcm ^{â^2} in Waterâ€Splitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	7.8	15
15	Charge Transfer: Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage (Adv. Energy Mater. 27/2021). Advanced Energy Materials, 2021, 11, 2170108.	10.2	1
16	Textileâ€Type Lithiumâ€Ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reactionâ€Mediated Assembly. Advanced Energy Materials, 2021, 11, 2101631.	10.2	19
17	Chiral Plasmonic Nanowaves by Tilted Assembly of Unidirectionally Aligned Block Copolymers with Buckling-Induced Microwrinkles. ACS Nano, 2021, 15, 17463-17471.	7.3	10
18	Chiral Magneto-Optical Properties of Supra-Assembled Fe ₃ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 54301-54307.	4.0	11

#	Article	IF	CITATIONS
19	A Metalâ€Like Conductive Elastomer with a Hierarchical Wrinkled Structure. Advanced Materials, 2020, 32, 1906460.	11.1	55
20	Interfacial control and design of conductive nanomaterials for transparent nanocomposite electrodes. Nanoscale, 2020, 12, 20141-20157.	2.8	8
21	Electroosmosis-Driven Hydrogel Actuators Using Hydrophobic/Hydrophilic Layer-By-Layer Assembly-Induced Crack Electrodes. ACS Nano, 2020, 14, 11906-11918.	7.3	31
22	Nanoparticleâ€Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layerâ€by‣ayer Assembly. Advanced Materials, 2020, 32, e2001924.	11.1	22
23	Nanoparticleâ€Based Electrodes: Nanoparticleâ€Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layerâ€byâ€Layer Assembly (Adv. Mater. 51/2020). Advanced Materials, 2020, 32, 2070382.	11.1	0
24	Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems. Nanoscale, 2020, 12, 12426-12431.	2.8	18
25	Conductive Elastomers: A Metalâ€Like Conductive Elastomer with a Hierarchical Wrinkled Structure (Adv. Mater. 7/2020). Advanced Materials, 2020, 32, 2070051.	11.1	2
26	Layerâ€byâ€Layer Assembled Oxide Nanoparticle Electrodes with High Transparency, Electrical Conductivity, and Electrochemical Activity by Reducing Organic Linkerâ€Induced Oxygen Vacancies. Small, 2020, 16, 1906768.	5.2	8
27	Charge-Transfer-Modulated Transparent Supercapacitor Using Multidentate Molecular Linker and Conductive Transparent Nanoparticle Assembly. ACS Nano, 2019, 13, 12719-12731.	7.3	29
28	Roomâ€Temperature Metallic Fusionâ€Induced Layerâ€byâ€Layer Assembly for Highly Flexible Electrode Applications. Advanced Functional Materials, 2019, 29, 1806584.	7.8	23
29	Highly Conductive Paper/Textile Electrodes Using Ligand Exchange Reaction-Induced in Situ Metallic Fusion. ACS Applied Materials & Interfaces, 2019, 11, 12032-12042.	4.0	11
30	Highly conductive electrocatalytic gold nanoparticle-assembled carbon fiber electrode for high-performance glucose-based biofuel cells. Journal of Materials Chemistry A, 2019, 7, 13495-13505.	5.2	36
31	High-performance electrochromic films with fast switching times using transparent/conductive nanoparticle-modulated charge transfer. Nanoscale, 2019, 11, 17815-17830.	2.8	16
32	Layer-by-layer assembly for ultrathin energy-harvesting films: Piezoelectric and triboelectric nancomposite films. Nano Energy, 2019, 56, 1-15.	8.2	54
33	Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances. Applied Surface Science, 2018, 440, 730-740.	3.1	7
34	Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand. Applied Surface Science, 2018, 436, 791-802.	3.1	3
35	Etchingâ€Assisted Crumpled Graphene Wrapped Spiky Iron Oxide Particles for Highâ€Performance Li″on Hybrid Supercapacitor. Small, 2018, 14, e1704209.	5.2	63
36	Acetylene-containing highly birefringent rod-type reactive liquid crystals based on 2-methylhydroquinone. Liquid Crystals, 2018, 45, 279-291.	0.9	4

#	Article	IF	CITATIONS
37	Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments. Nano Energy, 2018, 44, 228-239.	8.2	70
38	Stitchable supercapacitors with high energy density and high rate capability using metal nanoparticle-assembled cotton threads. Journal of Materials Chemistry A, 2018, 6, 20421-20432.	5.2	21
39	Thinâ€Film Electrode Design for High Volumetric Electrochemical Performance Using Metal Sputteringâ€Combined Ligand Exchange Layerâ€byâ€Layer Assembly. Advanced Functional Materials, 2018, 28, 1804926.	7.8	19
40	Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes. ACS Nano, 2018, 12, 10231-10239.	7.3	123
41	High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nature Communications, 2018, 9, 4479.	5.8	139
42	Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 22453-22459.	4.0	30
43	Instantaneous Pulsed-Light Cross-Linking of a Polymer Gate Dielectric for Flexible Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2017, 9, 11721-11731.	4.0	27
44	Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes. ACS Nano, 2017, 11, 684-692.	7.3	70
45	Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nature Communications, 2017, 8, 536.	5.8	313
46	Pyriteâ€Based Biâ€Functional Layer for Longâ€Term Stability and Highâ€Performance of Organoâ€Lead Halide Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 5400-5407.	7.8	46
47	Humidity controlled crystallization of thin CH ₃ NH ₃ PbI ₃ films for high performance perovskite solar cell. Physica Status Solidi - Rapid Research Letters, 2016, 10, 381-387.	1.2	39
48	Functional nanocomposites with perfect nanoblending between water-soluble polymers and hydrophobic inorganic nanoparticles: applications to electric-stimuli-responsive films. Nanoscale, 2016, 8, 18315-18325.	2.8	12
49	Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking. ACS Nano, 2016, 10, 9297-9305.	7.3	119
50	Hole Transport: Pyrite-Based Bi-Functional Layer for Long-Term Stability and High-Performance of Organo-Lead Halide Perovskite Solar Cells (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5382-5382.	7.8	1
51	Layer-by-layer assembled (high-energy carbon nanotube/conductive carbon nanotube) _n nanocomposites for high volumetric capacitance supercapacitor electrodes. RSC Advances, 2016, 6, 21844-21853.	1.7	14
52	Biomolecule nanoparticle-induced nanocomposites with resistive switching nonvolatile memory properties. Applied Surface Science, 2016, 368, 36-43.	3.1	12
53	Control over electrically bistable properties of layer-by-layer-assembled polymer/organometal multilayers. Polymer Journal, 2016, 48, 481-486.	1.3	3
54	Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology. Nano Energy, 2016, 20, 283-293.	8.2	105

#	Article	IF	CITATIONS
55	Multicatalytic colloids with highly scalable, adjustable, and stable functionalities in organic and aqueous media. Nanoscale, 2016, 8, 7000-7016.	2.8	11
56	Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors. Scientific Reports, 2015, 5, 14010.	1.6	21
57	Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy, 2015, 12, 612-625.	8.2	48
58	Ion‣pecific Oil Repellency of Polyelectrolyte Multilayers in Water: Molecular Insights into the Hydrophilicity of Charged Surfaces. Angewandte Chemie - International Edition, 2015, 54, 4851-4856.	7.2	70
59	Layer-by-Layer Assembly of Inorganic Nanosheets and Polyelectrolytes for Reverse Osmosis Composite Membranes. Journal of Chemical Engineering of Japan, 2014, 47, 180-186.	0.3	7
60	Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array. Nanotechnology, 2014, 25, 505604.	1.3	12
61	Tribological properties of biocompatible Ti–10W and Ti–7.5TiC–7.5W. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 214-222.	1.5	13
62	Novel method of powder-based processing of copper nanofoams for their potential use in energy applications. Materials Chemistry and Physics, 2014, 145, 6-11.	2.0	27
63	Layerâ€by‣ayer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 6262-6269.	7.8	48
64	Piezoelectrics: Layerâ€by‣ayer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators (Adv. Funct. Mater. 40/2014). Advanced Functional Materials, 2014, 24, 6246-6246.	7.8	0
65	Amphiphilic Layer-by-Layer Assembly Overcoming Solvent Polarity between Aqueous and Nonpolar Media. Journal of the American Chemical Society, 2014, 136, 17213-17223.	6.6	35
66	Enhanced Photovoltaic Properties and Long-Term Stability in Plasmonic Dye-Sensitized Solar Cells via Noncorrosive Redox Mediator. ACS Applied Materials & Interfaces, 2014, 6, 19191-19200.	4.0	35
67	High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnO _x nanocomposite electrodes. Nanoscale, 2014, 6, 9655-9664.	2.8	71
68	Polymer/Perovskite-Type Nanoparticle Multilayers with Multielectric Properties Prepared from Ligand Addition-Induced Layer-by-Layer Assembly. ACS Nano, 2014, 8, 2419-2430.	7.3	28
69	Metal nanoparticle fluids with magnetically induced electrical switching properties. Nanoscale, 2013, 5, 4917.	2.8	5
70	Solvent-Free Nanocomposite Colloidal Fluids with Highly Integrated and Tailored Functionalities: Rheological, Ionic Conduction, and Magneto-Optical Properties. Chemistry of Materials, 2013, 25, 3834-3843.	3.2	21
71	Inorganic nanoparticle multilayers using photo-crosslinking layer-by-layer assembly and their applications in nonvolatile memory devices. Nanoscale, 2013, 5, 12356.	2.8	11
72	Hydrophobic Nanoparticle-Based Nanocomposite Films Using <i>In Situ</i> Ligand Exchange Layer-by-Layer Assembly and Their Nonvolatile Memory Applications. ACS Nano, 2013, 7, 143-153.	7.3	83

#	Article	IF	CITATIONS
73	Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 4050-4056.	7.3	89
74	Multifunctional Colloids with Reversible Phase Transfer between Organic and Aqueous Media via Layer-by-Layer Assembly. Chemistry of Materials, 2013, 25, 1735-1743.	3.2	21
75	Organic Fieldâ€Effect Transistor Memory Devices Using Discrete Ferritin Nanoparticleâ€Based Gate Dielectrics. Small, 2013, 9, 3784-3791.	5.2	64
76	Nonvolatile Memory Devices Prepared from Sol–Gel Derived Niobium Pentoxide Films. Langmuir, 2013, 29, 380-386.	1.6	26
77	Effect of redox proteins on the behavior of non-volatile memory. Chemical Communications, 2012, 48, 12008.	2.2	11
78	Resistive switching memory properties of layer-by-layer assembled enzyme multilayers. Nanotechnology, 2012, 23, 155604.	1.3	40
79	Solvent-free nanoparticle fluids with highly collective functionalities for layer-by-layer assembly. Journal of Materials Chemistry, 2012, 22, 11488.	6.7	15
80	Layer-by-layer assembled enzyme multilayers with adjustable memory performance and low power consumption via molecular-level control. Journal of Materials Chemistry, 2012, 22, 4645.	6.7	21
81	Control over Memory Performance of Layer-by-Layer Assembled Metal Phthalocyanine Multilayers via Molecular-Level Manipulation. Chemistry of Materials, 2012, 24, 1091-1099.	3.2	38
82	Improved reliability of copper-cored solder joints under a harsh thermal cycling condition. Microelectronics Reliability, 2012, 52, 1441-1444.	0.9	15
83	Electrochemical sensors based on porous nanocomposite films with weak polyelectrolyte-stabilized gold nanoparticles. Journal of Materials Chemistry, 2011, 21, 8008.	6.7	20
84	Multifunctional Colloids with Optical, Magnetic, and Superhydrophobic Properties Derived from Nucleophilic Substitution-Induced Layer-by-Layer Assembly in Organic Media. ACS Nano, 2011, 5, 5417-5426.	7.3	72
85	Hollow capsules prepared from all block copolymer micelle multilayers. Journal of Colloid and Interface Science, 2011, 364, 112-117.	5.0	10
86	Electrically Bistable Properties of Layer-by-Layer Assembled Multilayers Based on Protein Nanoparticles. ACS Nano, 2011, 5, 9918-9926.	7.3	94
87	Multi-biocatalytic properties of layerby-layer assembled lysozyme/catalase multilayers. Macromolecular Research, 2011, 19, 635-638.	1.0	5
88	Nucleophilic Substitution Reaction Based Layerâ€by‣ayer Growth of Superparamagnetic Nanocomposite Films with High Nonvolatile Memory Performance. Advanced Materials, 2010, 22, 5140-5144.	11.1	44
89	Layerâ€by‣ayer Growth of Polymer/Quantum Dot Composite Multilayers by Nucleophilic Substitution in Organic Media. Angewandte Chemie - International Edition, 2010, 49, 359-363.	7.2	54
90	Highly Flexible Electronic and Optical Films Composed of Hydrophobic and Hydrophilic Multilayers. Macromolecular Chemistry and Physics, 2010, 211, 1188-1195.	1.1	2

Jinhan Cho

#	Article	IF	CITATIONS
91	Nonvolatile memory properties of Pt nanoparticle-embedded TiO ₂ nanocomposite multilayers via electrostatic layer-by-layer assembly. Nanotechnology, 2010, 21, 185704.	1.3	27
92	Desalination membranes from pH-controlled and thermally-crosslinked layer-by-layer assembled multilayers. Journal of Materials Chemistry, 2010, 20, 2085.	6.7	64
93	Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles. Nanotechnology, 2010, 21, 375702.	1.3	12
94	Carbon nanotube-based nanocomposite desalination membranes from layer-by-layer assembly. Desalination and Water Treatment, 2010, 15, 76-83.	1.0	21
95	Layer-by-Layer Assembled Multilayer TiO _{<i>x</i>} for Efficient Electron Acceptor in Polymer Hybrid Solar Cells. Langmuir, 2010, 26, 17589-17595.	1.6	12
96	Enhanced light emission of nano-patterned GaN via block copolymer thin films. Korean Journal of Chemical Engineering, 2009, 26, 277-280.	1.2	3
97	Magnetic nanocomposite multilayers using layer-by-layer assembly in nonpolar and polar solvent. Macromolecular Research, 2009, 17, 5-7.	1.0	5
98	Stabilization of Polymerâ€Hydrogel Capsules via Thiol–Disulfide Exchange. Small, 2009, 5, 2601-2610.	5.2	90
99	Resistive Switching Memory Devices Composed of Binary Transition Metal Oxides Using Solâ^'Gel Chemistry. Langmuir, 2009, 25, 4274-4278.	1.6	49
100	Free-Standing Nanocomposite Multilayers with Various Length Scales, Adjustable Internal Structures, and Functionalities. Journal of the American Chemical Society, 2009, 131, 2579-2587.	6.6	77
101	Nonvolatile Resistive Switching Memory Properties of Thermally Annealed Titania Precursor/Polyelectrolyte Multilayers. Langmuir, 2009, 25, 11276-11281.	1.6	26
102	Controlled Fabrication of Multiwall Anatase TiO ₂ Nanotubular Architectures. Chemistry of Materials, 2009, 21, 2574-2576.	3.2	51
103	Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method. Journal of Materials Chemistry, 2009, 19, 2006.	6.7	40
104	Free-standing film electronics using photo-crosslinking layer-by-layer assembly. Journal of Materials Chemistry, 2009, 19, 4488.	6.7	22
105	Integrated Catalytic Activity of Patterned Multilayer Films Based on pHâ€Induced Electrostatic Properties of Enzymes. Advanced Materials, 2008, 20, 1843-1848.	11.1	22
106	Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport. Journal of Membrane Science, 2008, 321, 90-93.	4.1	37
107	Thermally Stable Antireflective Coatings Based on Nanoporous Organosilicate Thin Films. Langmuir, 2007, 23, 6737-6743.	1.6	75
108	Tunable Superhydrophobic and Optical Properties of Colloidal Films Coated with Blockâ€Copolymerâ€Micelles/Micelleâ€Multilayers. Advanced Materials, 2007, 19, 4364-4369.	11.1	98

Jinhan Cho

#	Article	IF	CITATIONS
109	Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nature Nanotechnology, 2007, 2, 790-795.	15.6	251
110	Electroluminescent characteristics of spin-assembled multilayer films with confined layer structure. Thin Solid Films, 2007, 516, 78-83.	0.8	4
111	Modulating the Pattern Quality of Micropatterned Multilayer Films Prepared by Layer-by-Layer Self-Assembly. Langmuir, 2006, 22, 1356-1364.	1.6	41
112	Effect of Interfacial Adhesion on the Mechanical Properties of Organic/Inorganic Hybrid Nanolaminates. Journal of Adhesion, 2006, 82, 447-468.	1.8	12
113	Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties. Journal of the American Chemical Society, 2006, 128, 9935-9942.	6.6	219
114	Colloid Surface Engineering via Deposition of Multilayered Thin Films from Polyelectrolyte Blend Solutions. Langmuir, 2005, 21, 4328-4333.	1.6	52
115	Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films. Chemistry of Materials, 2005, 17, 4547-4553.	3.2	105
116	Fabrication of Polyelectrolyte Multilayer Films Comprising Nanoblended Layers. Journal of the American Chemical Society, 2004, 126, 2270-2271.	6.6	102
117	Effect of Layer Integrity of Spin Self-Assembled Multilayer Films on Surface Wettability. Langmuir, 2004, 20, 4011-4016.	1.6	48
118	Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. Nano Letters, 2003, 3, 1203-1207.	4.5	398
119	Fabrication of highly ordered multilayer thin films and its applications. Korean Journal of Chemical Engineering, 2003, 20, 174-179.	1.2	9
120	Quantitative analysis on the adsorbed amount and structural characteristics of spin self-assembled multilayer films. Polymer, 2003, 44, 5455-5459.	1.8	16
121	Polymeric Multilayer Films Comprising Deconstructible Hydrogen-Bonded Stacks Confined between Electrostatically Assembled Layers. Macromolecules, 2003, 36, 2845-2851.	2.2	93
122	CHARACTERISTICS AND MICROPATTERNING OF SPIN SELF-ASSEMBLED ULTRATHIN MULTILAYERS. , 2003, , .		0
123	CHARACTERISTICS AND MICROPATTERNING OF SPIN SELF-ASSEMBLED ULTRATHIN MULTILAYERS. International Journal of Nanoscience, 2002, 01, 375-381.	0.4	1
124	Change in the quantum efficiency due to relative thickness variation of hole transport and emitting layers in a self-assembled device. Thin Solid Films, 2002, 415, 303-307.	0.8	5
125	Change in electrical characteristics of poly(p -phenylene vinylene)-based self-assembled devices by addition of ionic salt to poly(sodium 4-styrenesulfonate). Synthetic Metals, 2001, 124, 415-419.	2.1	11
126	Change in Quantum Efficiency of Self-assembled Films Based on PPV and Ionic Salt Added PSS. Molecular Crystals and Liquid Crystals, 2001, 371, 75-78.	0.3	2

#	Article	IF	CITATIONS
127	Dual Morphology of Islands and Fractal Holes in Block Copolymer Thin Films. Macromolecules, 2001, 34, 8405-8408.	2.2	16
128	Fabrication of Highly Ordered Multilayer Films Using a Spin Self-Assembly Method. Advanced Materials, 2001, 13, 1076-1078.	11.1	414
129	Fabrication of Multilayer Films Using a Spinning Process. Materials Research Society Symposia Proceedings, 2000, 648, 1.	0.1	0
130	Effect of added ionic salt on the quantum efficiency of self-assembled films prepared with poly(p-phenylene vinylene). Thin Solid Films, 2000, 379, 188-194.	0.8	16
131	Electronic Characteristics of Self-Assembled Hybrid Devices Based on PPV and CdS Nanoparticles. Molecular Crystals and Liquid Crystals, 2000, 349, 183-186.	0.3	2