Weiqi Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5792284/publications.pdf

Version: 2024-02-01

19	785	16	19
papers	citations	h-index	g-index
20	20	20	493 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Machine learning for combustion. Energy and Al, 2022, 7, 100128.	10.6	68
2	Autonomous kinetic modeling of biomass pyrolysis using chemical reaction neural networks. Combustion and Flame, 2022, 240, 111992.	5. 2	32
3	SGD-based optimization in modeling combustion kinetics: Case studies in tuning mechanistic and hybrid kinetic models. Fuel, 2022, 324, 124560.	6.4	9
4	Autonomous Discovery of Unknown Reaction Pathways from Data by Chemical Reaction Neural Network. Journal of Physical Chemistry A, 2021, 125, 1082-1092.	2.5	61
5	Uncertainty analysis in mechanism reduction via active subspace and transition state analyses. Combustion and Flame, 2021, 227, 135-146.	5.2	10
6	Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics. Journal of Physical Chemistry A, 2021, 125, 8098-8106.	2.5	100
7	Stiff neural ordinary differential equations. Chaos, 2021, 31, 093122.	2.5	53
8	Data-Driven Approaches to Learn HyChem Models. , 2021, , .		2
9	Machine learning model to project the impact of COVID-19 on US motor gasoline demand. Nature Energy, 2020, 5, 666-673.	39.5	56
10	Dependence of kinetic sensitivity direction in premixed flames. Combustion and Flame, 2020, 220, 16-22.	5.2	6
11	Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces. Proceedings of the Combustion Institute, 2019, 37, 2175-2182.	3.9	38
12	Evolution of sensitivity directions during autoignition. Proceedings of the Combustion Institute, 2019, 37, 807-815.	3.9	32
13	Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs. Combustion and Flame, 2018, 190, 146-157.	5.2	38
14	On the crossover temperature and lower turnover state in the NTC regime. Proceedings of the Combustion Institute, 2017, 36, 343-353.	3.9	29
15	Measurement of reaction rate constants using RCM: A case study of decomposition of dimethyl carbonate to dimethyl ether. Combustion and Flame, 2017, 183, 30-38.	5.2	21
16	Ignition delay measurements of light naphtha: A fully blended low octane fuel. Proceedings of the Combustion Institute, 2017, 36, 315-322.	3.9	46
17	First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation. Combustion and Flame, 2016, 167, 14-23.	5.2	83
	On the controlling mechanism of the upper turnover states in the NTC regime. Combustion and Flame,		

#	Article	IF	CITATIONS
19	Intermediate species measurement during iso-butanol auto-ignition. Combustion and Flame, 2015, 162, 3541-3553.	5.2	32