
Hidetoshi Miyazaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5792088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vanadium oxide-based photochromic composite film. RSC Advances, 2017, 7, 2388-2391.	3.6	28
2	Fabrication of Photochromic Tungsten Oxide Based Composite Film Using Peroxoisopolytungstic Acid. Bulletin of the Chemical Society of Japan, 2011, 84, 1390-1392.	3.2	22
3	Fabrication of radiative cooling devices using Si ₂ N ₂ O nano-particles. Journal of the Ceramic Society of Japan, 2016, 124, 1185-1187.	1.1	18
4	Design of ITO/transparent resin optically selective transparent composite. Solar Energy Materials and Solar Cells, 2003, 79, 51-55.	6.2	16
5	Improvement of the Photochromic Properties of WO3-Based Composite Films by Phosphorus Addition. Bulletin of the Chemical Society of Japan, 2014, 87, 838-841.	3.2	15
6	Fabrication of WO3-Based Composite Films and Improvement Its Photochromic Properties by Copper Doping. Bulletin of the Chemical Society of Japan, 2012, 85, 1053-1056.	3.2	14
7	Nickel oxide-based photochromic composite films. Journal of the Ceramic Society of Japan, 2016, 124, 1175-1177.	1.1	14
8	Fabrication of radiative cooling materials based on Si ₂ N ₂ O particles by the nitridation of mixtures of silicon and silicon dioxide powders. Journal of the Ceramic Society of Japan, 2013, 121, 242-245.	1.1	13
9	Influence of TiO ₂ Solid Solution on the Thermal Property and Ionic Conductivity Of Partially Stabilized Zirconia. International Journal of Applied Ceramic Technology, 2008, 5, 490-498.	2.1	12
10	Effect of Film Thickness and Air Atmosphere on Photochromic Properties of WO3-Based Composite Films. Bulletin of the Chemical Society of Japan, 2016, 89, 20-23.	3.2	12
11	Molybdenum doping effects on photochromic properties of WO ₃ based composite films. Journal of the Ceramic Society of Japan, 2013, 121, 106-108.	1.1	10
12	The effect of TiO2 additives on the structural stability and thermal properties of yttria fully-stabilized zirconia. Journal of Thermal Analysis and Calorimetry, 2009, 98, 343-346.	3.6	9
13	Fabrication of transition temperature controlled W-doped VO2 nano particles by aqueous solution. Journal of the Ceramic Society of Japan, 2011, 119, 522-524.	1.1	9
14	Fabrication of Photochromic Molybdenum Oxide-Based Composite Films Using Peroxoisopolymolybdic Acid. Bulletin of the Chemical Society of Japan, 2013, 86, 1323-1326.	3.2	9
15	Thermochromic tungsten doped VO2-SiO2 nano-particle synthesized by chemical solution deposition technique. Journal of the Ceramic Society of Japan, 2009, 117, 970-972.	1.1	8
16	Thermochromic VO ₂ -Nanocoated SiO ₂ Nanopowder Fabricated by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2007, 46, 7737.	1.5	6
17	Deposition of hydroxyapatite thin films from saturated calcium phosphate solution by controlling the substrate temperature. Journal of the Ceramic Society of Japan, 2014, 122, 835-837.	1.1	6
18	Phosphorescence properties of MSi ₂ O ₂ N ₂ :Eu (M = Ca, Sr, Ba) mixture-phase phosphors using Si ₂ N ₂ O powder. Journal of the Ceramic Society of Japan, 2015, 123, 152-155.	1.1	6

Hidetoshi Miyazaki

#	Article	IF	CITATIONS
19	Synthesis of Photochromic AgCl-Urethane Resin Composite Films. Advances in Materials Science and Engineering, 2012, 2012, 1-4.	1.8	5
20	Controlling photochromic properties of molybdenum oxide based composite films by copper addition. Journal of the Ceramic Society of Japan, 2014, 122, 83-85.	1.1	5
21	Fabrication of Eu-doped SrSi ₂ O ₂ N ₂ phosphor by a solid-state reaction using a new source of Si ₂ N ₂ O powder. Journal of the Ceramic Society of Japan, 2014, 122, 9-11.	1.1	5
22	Synthesis of Sr substituted BaTiO ₃ nanoparticles by hydrothermal treatments with maintaining the source material form and particle size. Journal of the Ceramic Society of Japan, 2021, 129, 143-146.	1.1	5
23	Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films. Advances in Materials Science and Engineering, 2013, 2013, 1-5.	1.8	4
24	Fabrication of Zn ₃ V ₂ O ₈ yellow phosphor from precursor aqueous solution of zinc acetate and peroxo-isopolyvanadic acid. Journal of the Ceramic Society of Japan, 2016, 124, 34-36.	1.1	4
25	Low-temperature synthesis of white-light-emitting CsVO ₃ nanoparticles by an aqueous solution route. Journal of the Ceramic Society of Japan, 2017, 125, 657-659.	1.1	4
26	Synthesis of ferroelectric BaTi2O5 nanoparticles via modifying peroxopolytitanic acid solution. Ceramics International, 2020, 46, 23232-23235.	4.8	4
27	Phosphorus solid solution effects of electric and dielectric properties on sintered WO3 ceramics. Journal of the Ceramic Society of Japan, 2011, 119, 650-653.	1.1	3
28	Fabrication of VO ₂ nanopowder via direct reaction of vanadium metal and hydrogen peroxide. Journal of the Ceramic Society of Japan, 2013, 121, 100-102.	1.1	3
29	Effects of particle form on the angular dependence of transmittance for needle-like TiO ₂ particle arrayed composite films. Journal of the Ceramic Society of Japan, 2013, 121, 17-20.	1.1	3
30	Controlling the photochromic properties of tungsten oxide based photochromic composite films using boron-, carbon-, and sulfur- tungstic heteropoly acids. Journal of the Ceramic Society of Japan, 2015, 123, 884-887.	1.1	3
31	Synthesis of recycled cements using hydrothermally treated waste soda lime glass. Journal of the Ceramic Society of Japan, 2017, 125, 55-56.	1.1	3
32	KDP–ADP Crystal Growth by the Solutionâ€Dropping Method. Journal of the American Ceramic Society, 2007, 90, 4023-4025.	3.8	2
33	Fabrication of thermochromic SmNiO ₃ film deposited by spin-coating method from aqueous solution. Journal of the Ceramic Society of Japan, 2013, 121, 10-12.	1.1	2
34	Lowering BaTi2O5 Curie temperature by Sr facile hydrothermal ion-exchange while retaining the original particle morphology. Materials Chemistry and Physics, 2021, 272, 125037.	4.0	2
35	Synthesizing of Yttria-silica Additives by Sol-gel Method for Multi Layered Ceramic Capacitor Device. Journal of the Society of Powder Technology, Japan, 2009, 46, 86-89.	0.1	1
36	Correlation between a dielectric anomaly and a phase transition of sintered phosphorus doped WO ₃ ceramics. Journal of the Ceramic Society of Japan, 2014, 122, 25-28.	1.1	1

#	Article	IF	CITATIONS
37	Synthesis of Radiative-cooling Si ₂ N ₂ O Particles using Silicon Dioxide Powders Obtained by Hydrothermal Processing of Waste Glass Powders. Journal of the Japan Society of Material Cycles and Waste Management, 2015, 26, 84-88.	0.0	1
38	Nb2O5 nanoparticle-based composite films using transparent urethane resin matrix. Composites Communications, 2019, 12, 98-100.	6.3	1
39	Fabrication of a Composite Varistor with Electrical Conductive Ni Filler and Electrostriction PNZST Matrix. Journal of the American Ceramic Society, 2008, 91, 187-191.	3.8	0
40	Fabrication of thermochromic composite films using transition temperature controlled VO ₂ fine particles. Journal of the Ceramic Society of Japan, 2014, 122, 354-356.	1.1	0
41	Fluorescence properties and structures of firing corbicula japonica shells. Journal of the Ceramic Society of Japan, 2016, 124, S1-S3.	1.1	0
42	Evaluation of origin place of corbicula japonica using fluorescence properties of samples by firing shells. Journal of the Ceramic Society of Japan, 2016, 124, S4-S6.	1.1	0