
John Elie Sader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5791824/publications.pdf Version: 2024-02-01

IOHN FLIE SADER

#	Article	IF	CITATIONS
1	Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments, 1999, 70, 3967-3969.	0.6	1,833
2	Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998, 84, 64-76.	1.1	1,212
3	Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 1995, 66, 3789-3798.	0.6	879
4	Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Applied Physics Letters, 2004, 84, 1801-1803.	1.5	651
5	Theoretical analysis of the static deflection of plates for atomic force microscope applications. Journal of Applied Physics, 1993, 74, 1-9.	1.1	641
6	Normal and torsional spring constants of atomic force microscope cantilevers. Review of Scientific Instruments, 2004, 75, 1988-1996.	0.6	455
7	Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. Journal of Applied Physics, 2000, 87, 3978-3988.	1.1	302
8	Microstructure-Hardened Silver Nanowires. Nano Letters, 2006, 6, 468-472.	4.5	268
9	Parallel beam approximation for Vâ€shaped atomic force microscope cantilevers. Review of Scientific Instruments, 1995, 66, 4583-4587.	0.6	242
10	Vibrational Response of Nanorods to Ultrafast Laser Induced Heating:Â Theoretical and Experimental Analysis. Journal of the American Chemical Society, 2003, 125, 14925-14933.	6.6	238
11	Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments, 2012, 83, 103705.	0.6	228
12	Mechanical Properties of ZnO Nanowires. Physical Review Letters, 2008, 101, 175502.	2.9	226
13	Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order. Journal of Applied Physics, 2007, 101, 044908.	1.1	194
14	A Generalized Description of the Elastic Properties of Nanowires. Nano Letters, 2006, 6, 1101-1106.	4.5	193
15	Damping of acoustic vibrations in gold nanoparticles. Nature Nanotechnology, 2009, 4, 492-495.	15.6	191
16	Effect of Surface Stress on the Stiffness of Cantilever Plates. Physical Review Letters, 2007, 99, 206102.	2.9	156
17	Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: Rectangular plates. Journal of Applied Physics, 2001, 89, 2911-2921.	1.1	148
18	Structured Water Layers Adjacent to Biological Membranes. Biophysical Journal, 2006, 91, 2532-2542.	0.2	145

#	Article	IF	CITATIONS
19	Inertial imaging with nanomechanical systems. Nature Nanotechnology, 2015, 10, 339-344.	15.6	141
20	Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 2002, 92, 6262-6274.	1.1	140
21	Accurate Analytic Formulas for the Double-Layer Interaction between Spheres. Journal of Colloid and Interface Science, 1995, 171, 46-54.	5.0	138
22	Quantitative force measurements using frequency modulation atomic force microscopy?theoretical foundations. Nanotechnology, 2005, 16, S94-S101.	1.3	137
23	Ultimate-Strength Germanium Nanowires. Nano Letters, 2006, 6, 2964-2968.	4.5	135
24	Nanomechanical Torsional Resonators for Frequency-Shift Infrared Thermal Sensing. Nano Letters, 2013, 13, 1528-1534.	4.5	130
25	Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope. Journal of Applied Physics, 2005, 98, 114913.	1.1	126
26	Resonant frequencies of a rectangular cantilever beam immersed in a fluid. Journal of Applied Physics, 2006, 100, 114916.	1.1	117
27	A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 2016, 87, 093711.	0.6	114
28	Nonlinear Mode-Coupling in Nanomechanical Systems. Nano Letters, 2013, 13, 1622-1626.	4.5	110
29	Long-Range Electrostatic Attractions between Identically Charged Particles in Confined Geometries: An Unresolved Problem. Journal of Colloid and Interface Science, 1999, 213, 268-269.	5.0	109
30	Evolution of Colloidal Nanocrystals: Theory and Modeling of their Nucleation and Growth. Journal of Physical Chemistry C, 2009, 113, 16342-16355.	1.5	92
31	Damping of Acoustic Vibrations of Immobilized Single Gold Nanorods in Different Environments. Nano Letters, 2013, 13, 2710-2716.	4.5	92
32	Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface. Physics of Fluids, 2005, 17, 073102.	1.6	90
33	Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams. Physical Review Letters, 2012, 108, 236101.	2.9	89
34	Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures. Physical Review Letters, 2013, 111, 244502.	2.9	88
35	Long-Range Electrostatic Attractions between Identically Charged Particles in Confined Geometries and the Poissonâ^'Boltzmann Theory. Langmuir, 2000, 16, 324-331.	1.6	82
36	PROBING THE SURFACE OF LIVING DIATOMS WITH ATOMIC FORCE MICROSCOPY: THE NANOSTRUCTURE AND NANOMECHANICAL PROPERTIES OF THE MUCILAGE LAYER1. Journal of Phycology, 2003, 39, 722-734.	1.0	81

#	Article	IF	CITATIONS
37	Softening of the Symmetric Breathing Mode in Gold Particles by Laser-Induced Heatingâ€. Journal of Physical Chemistry B, 2003, 107, 7472-7478.	1.2	81
38	Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons. Nano Letters, 2016, 16, 2651-2656.	4.5	79
39	Large-amplitude flapping of an inverted flag in a uniform steady flow – a vortex-induced vibration. Journal of Fluid Mechanics, 2016, 793, 524-555.	1.4	75
40	Time-resolved spectroscopy of silver nanocubes: Observation and assignment of coherently excited vibrational modes. Journal of Chemical Physics, 2007, 126, 094709.	1.2	72
41	Susceptibility of atomic force microscope cantilevers to lateral forces. Review of Scientific Instruments, 2003, 74, 2438-2443.	0.6	70
42	Coherent Excitation of Vibrational Modes in Gold Nanorods. Journal of Physical Chemistry B, 2002, 106, 743-747.	1.2	69
43	General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. Journal of Applied Physics, 2005, 97, 124903.	1.1	68
44	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nature Communications, 2015, 6, 7022.	5.8	65
45	Quantitative measurement of solvation shells using frequency modulated atomic force microscopy. Nanotechnology, 2005, 16, S49-S53.	1.3	64
46	Accurate Analytic Formulae for the Far Field Effective Potential and Surface Charge Density of a Uniformly Charged Sphere. Journal of Colloid and Interface Science, 1997, 188, 508-510.	5.0	57
47	In-plane deformation of cantilever plates with applications to lateral force microscopy. Review of Scientific Instruments, 2004, 75, 878-883.	0.6	57
48	Oscillation of cylinders of rectangular cross section immersed in fluid. Physics of Fluids, 2010, 22, .	1.6	55
49	Velocity profile in the Knudsen layer according to the Boltzmann equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 2015-2035.	1.0	54
50	Global modes and nonlinear analysis of inverted-flag flapping. Journal of Fluid Mechanics, 2018, 857, 312-344.	1.4	51
51	Vibrational Response of Auâ^'Ag Nanoboxes and Nanocages to Ultrafast Laser-Induced Heating. Nano Letters, 2007, 7, 1059-1063.	4.5	50
52	Optomechanics of Single Aluminum Nanodisks. Nano Letters, 2017, 17, 2575-2583.	4.5	50
53	Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope. Journal of Applied Physics, 2009, 106, .	1.1	49
54	Mechanical properties of individual electrospun polymer-nanotube composite nanofibers. Carbon, 2009, 47, 2253-2258.	5.4	49

#	Article	IF	CITATIONS
55	Vibrational coupling in plasmonic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11621-11626.	3.3	49
56	Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell. Physical Review E, 1994, 49, 420-432.	0.8	48
57	Small amplitude oscillations of a flexible thin blade in a viscous fluid: Exact analytical solution. Physics of Fluids, 2006, 18, 123102.	1.6	47
58	Influence of atomic force microscope cantilever tilt and induced torque on force measurements. Journal of Applied Physics, 2008, 103, .	1.1	47
59	Nonmonotonic Energy Dissipation in Microfluidic Resonators. Physical Review Letters, 2009, 102, 228103.	2.9	46
60	Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Physics of Fluids, 2015, 27, .	1.6	46
61	Electrostatic Contribution to the Energy and Entropy of Protein Adsorption. Journal of Colloid and Interface Science, 1998, 203, 218-221.	5.0	44
62	Quantitative force measurements in liquid using frequency modulation atomic force microscopy. Applied Physics Letters, 2004, 85, 3575-3577.	1.5	44
63	Probing Silver Deposition on Single Gold Nanorods by Their Acoustic Vibrations. Nano Letters, 2014, 14, 915-922.	4.5	43
64	Hollow Microtube Resonators via Silicon Self-Assembly toward Subattogram Mass Sensing Applications. Nano Letters, 2016, 16, 1537-1545.	4.5	43
65	Mass Spectrometry Using Nanomechanical Systems: Beyond the Point-Mass Approximation. Nano Letters, 2018, 18, 1608-1614.	4.5	43
66	Energy dissipation in microfluidic beam resonators. Journal of Fluid Mechanics, 2010, 650, 215-250.	1.4	42
67	Theory of Acoustic Breathing Modes of Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 1399-1402.	1.2	41
68	Mechanical Damping of Longitudinal Acoustic Oscillations of Metal Nanoparticles in Solution. Journal of Physical Chemistry C, 2011, 115, 23732-23740.	1.5	41
69	Self-Assembled Nanoparticle Drumhead Resonators. Nano Letters, 2013, 13, 2158-2162.	4.5	39
70	Compressible Viscoelastic Liquid Effects Generated by the Breathing Modes of Isolated Metal Nanowires. Nano Letters, 2015, 15, 3964-3970.	4.5	39
71	Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems. Nanotechnology, 2005, 16, S85-S89.	1.3	38
72	Frequency Modulation Atomic Force Microscopy Reveals Individual Intermediates Associated with each Unfolded 127 Titin Domain. Biophysical Journal, 2006, 90, 640-647.	0.2	38

#	Article	IF	CITATIONS
73	Velocity gradient singularity and structure of the velocity profile in the Knudsen layer according to the Boltzmann equation. Physical Review E, 2007, 76, 026315.	0.8	38
74	Effect of surface stress on the stiffness of thin elastic plates and beams. Physical Review B, 2012, 85, .	1.1	37
75	Vibration of Nanoparticles in Viscous Fluids. Journal of Physical Chemistry C, 2013, 117, 8536-8544.	1.5	36
76	Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope. Review of Scientific Instruments, 2014, 85, 113702.	0.6	36
77	Autonomous propulsion of nanorods trapped in an acoustic field. Journal of Fluid Mechanics, 2017, 825, 29-48.	1.4	36
78	Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping. Nano Letters, 2018, 18, 3494-3501.	4.5	35
79	Strong vibrational coupling in room temperature plasmonic resonators. Nature Communications, 2019, 10, 1527.	5.8	35
80	Stability of slender inverted flags and rods in uniform steady flow. Journal of Fluid Mechanics, 2016, 809, 873-894.	1.4	34
81	Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates. Journal of Applied Physics, 2002, 91, 9354-9361.	1.1	33
82	Interatomic force laws that evade dynamic measurement. Nature Nanotechnology, 2018, 13, 1088-1091.	15.6	33
83	Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus. Physical Review B, 2004, 70, .	1.1	30
84	Accuracy of the lattice Boltzmann method for low-speed noncontinuum flows. Physical Review E, 2011, 83, 045701.	0.8	30
85	Susceptibility of atomic force microscope cantilevers to lateral forces: Experimental verification. Applied Physics Letters, 2003, 83, 3195-3197.	1.5	29
86	Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy. Physical Review B, 2006, 74, .	1.1	29
87	High accuracy numerical solutions of the Boltzmann Bhatnagar-Gross-Krook equation for steady and oscillatory Couette flows. Physics of Fluids, 2012, 24, 032004.	1.6	29
88	Poisson's ratio of individual metal nanowires. Nature Communications, 2014, 5, 4336.	5.8	28
89	Electrical Double-Layer Interaction between Heterogeneously Charged Colloidal Particles: A Superposition Formulation. Journal of Colloid and Interface Science, 1998, 201, 233-243.	5.0	26
90	Electrical Double-Layer Interaction between Charged Particles near Surfaces and in Confined Geometries. Journal of Colloid and Interface Science, 1999, 218, 423-432.	5.0	25

#	Article	IF	CITATIONS
91	Spectral properties of microcantilevers in viscous fluid. Physical Review E, 2010, 81, 046306.	0.8	25
92	Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators. Nature Communications, 2019, 10, 3647.	5.8	24
93	The dominant role of the solvent–water interface in water droplet templating of polymers. Soft Matter, 2013, 9, 7960.	1.2	23
94	On the measurement of relaxation times of acoustic vibrations in metal nanowires. Physical Chemistry Chemical Physics, 2018, 20, 17687-17693.	1.3	23
95	Effect of surface stress on the stiffness of cantilever plates: Influence of cantilever geometry. Applied Physics Letters, 2009, 95, .	1.5	22
96	Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope. Physical Review E, 2010, 81, 056305.	0.8	22
97	Photoacoustic detection of gases using microcantilevers. Journal of Applied Physics, 2009, 106, .	1.1	21
98	Energy dissipation in microfluidic beam resonators: Dependence on mode number. Journal of Applied Physics, 2010, 108, 114507.	1.1	21
99	Lattice Boltzmann method for oscillatory Stokes flow with applications to micro- and nanodevices. Physical Review E, 2010, 81, 036706.	0.8	21
100	Sphere oscillating in a rarefied gas. Journal of Fluid Mechanics, 2016, 794, 109-153.	1.4	21
101	Acoustic Vibrations of Al Nanocrystals: Size, Shape, and Crystallinity Revealed by Single-Particle Transient Extinction Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 3924-3934.	1.1	21
102	Accurate formula for conversion of tunneling current in dynamic atomic force spectroscopy. Applied Physics Letters, 2010, 97, .	1.5	20
103	Note: Calibration of atomic force microscope cantilevers using only their resonant frequency and quality factor. Review of Scientific Instruments, 2014, 85, 116101.	0.6	20
104	Acoustic Vibrations and Energy Dissipation Mechanisms for Lithographically Fabricated Plasmonic Nanostructures Revealed by Single-Particle Transient Extinction Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 1621-1636.	1.5	20
105	Flexural Resonant Frequencies of Thin Rectangular Cantilever Plates. Journal of Applied Mechanics, Transactions ASME, 2008, 75, .	1.1	18
106	High frequency oscillatory flows in a slightlyÂrarefied gas according to the Boltzmann–BGKÂequation. Journal of Fluid Mechanics, 2013, 729, 1-46.	1.4	18
107	Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope. Review of Scientific Instruments, 2014, 85, 025104.	0.6	18
108	When Can the Elastic Properties of Simple Liquids Be Probed Using High-Frequency Nanoparticle Vibrations?. Journal of Physical Chemistry C, 2018, 122, 13347-13353.	1.5	18

#	Article	IF	CITATIONS
109	Taming Self-Organization Dynamics to Dramatically Control Porous Architectures. ACS Nano, 2016, 10, 3087-3092.	7.3	17
110	Effect of multiplicative noise on least-squares parameter estimation with applications to the atomic force microscope. Review of Scientific Instruments, 2012, 83, 055106.	0.6	16
111	Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer. Physical Review E, 2015, 92, 013307.	0.8	16
112	Compressible viscous flows generated by oscillating flexible cylinders. Physics of Fluids, 2009, 21, .	1.6	15
113	Water bells formed on the underside of a horizontal plate. Part 1. Experimental investigation. Journal of Fluid Mechanics, 2010, 649, 19-43.	1.4	14
114	Dynamic Similarity of Oscillatory Flows Induced by Nanomechanical Resonators. Physical Review Letters, 2014, 112, 015501.	2.9	14
115	Wrinkling of transversely loaded spinning membranes. International Journal of Solids and Structures, 2018, 139-140, 163-173.	1.3	14
116	Water bells formed on the underside of a horizontal plate. Part 2. Theory. Journal of Fluid Mechanics, 2010, 649, 45-68.	1.4	13
117	Asymptotic analysis of the Boltzmann–BGK equation for oscillatory flows. Journal of Fluid Mechanics, 2012, 708, 197-249.	1.4	13
118	Viscoelasticity of liquid water investigated using molecular dynamics simulations. Physical Review Fluids, 2019, 4, .	1.0	13
119	Energy dissipation in microfluidic beam resonators: Effect of Poisson's ratio. Physical Review E, 2011, 84, 026304.	0.8	12
120	Buckling of a cantilever plate uniformly loaded in its plane with applications to surface stress and thermal loads. Journal of Applied Physics, 2013, 113, 024501.	1.1	12
121	Lattice Boltzmann method for linear oscillatory noncontinuum flows. Physical Review E, 2014, 89, 033305.	0.8	12
122	Incipient plane-strain failure of a rectangular block under gravity. International Journal of Mechanical Sciences, 2001, 43, 793-815.	3.6	11
123	Distortion in the thermal noise spectrum and quality factor of nanomechanical devices due to finite frequency resolution with applications to the atomic force microscope. Review of Scientific Instruments, 2011, 82, 095104.	0.6	11
124	Induced flow due to blowing and suction flow control: an analysis of transpiration. Journal of Fluid Mechanics, 2012, 690, 366-398.	1.4	11
125	Resonant frequencies of cantilevered sheets under various clamping configurations immersed in fluid. Journal of Applied Physics, 2016, 120, .	1.1	11
126	Measurement of Navier Slip on Individual Nanoparticles in Liquid. Nano Letters, 2021, 21, 4959-4965.	4.5	11

#	Article	IF	CITATIONS
127	Frequency-domain Monte Carlo method for linear oscillatory gas flows. Journal of Computational Physics, 2015, 284, 351-366.	1.9	10
128	Mass measurement of graphene using quartz crystal microbalances. Applied Physics Letters, 2019, 115, .	1.5	10
129	Viscoelasticity Enhances Nanometer-Scale Slip in Gigahertz-Frequency Liquid Flows. Journal of Physical Chemistry Letters, 2021, 12, 3449-3455.	2.1	10
130	Method for analysis of complex refractive-index-profile fibers. Optics Letters, 1990, 15, 105.	1.7	9
131	Effect of morphology on the large-amplitude flapping dynamics of an inverted flag in a uniform flow. Journal of Fluid Mechanics, 2019, 874, 526-547.	1.4	9
132	Highly Spherical Nanoparticles Probe Gigahertz Viscoelastic Flows of Simple Liquids Without the No-Slip Condition. Journal of Physical Chemistry Letters, 2021, 12, 4440-4446.	2.1	9
133	Existence of Micrometer-Scale Water Droplets at Solvent/Air Interfaces. Langmuir, 2012, 28, 13218-13223.	1.6	8
134	Analysis of arbitrary profiles by implementation of integral equation eigenvalue analysis. IEEE Journal of Quantum Electronics, 1990, 26, 2013-2024.	1.0	7
135	Incipient failure of a circular cylinder under gravity. International Journal of Mechanical Sciences, 2002, 44, 1779-1800.	3.6	7
136	Dissipation Imaging with Low Amplitude off-Resonance Atomic Force Microscopy. Japanese Journal of Applied Physics, 2005, 44, 5325-5327.	0.8	7
137	Measurement of the Optical Properties and Shape of Nanoparticles in Solution Using Couette Flow. ACS Nano, 2008, 2, 334-340.	7.3	7
138	Frequency-domain deviational Monte Carlo method for linear oscillatory gas flows. Physics of Fluids, 2015, 27, 102002.	1.6	7
139	Viscoelasticity of glycerol at ultra-high frequencies investigated via molecular dynamics simulations. Journal of Chemical Physics, 2016, 144, 054502.	1.2	7
140	Dynamics of an inverted cantilever plate at moderate angle of attack. Journal of Fluid Mechanics, 2021, 909, .	1.4	7
141	Analysis of arbitrarily perturbed circular profiles by implementation of integral-equation theory. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1990, 7, 2094.	0.8	6
142	The Effect of Aspect Ratio and Angle of Attack on the Transition Regions of the Inverted Flag Instability. , 2014, , .		6
143	Note: Improved calibration of atomic force microscope cantilevers using multiple reference cantilevers. Review of Scientific Instruments, 2015, 86, 056106.	0.6	6
144	Flow generated by oscillatory uniform heating of a rarefied gas in a channel. Journal of Fluid Mechanics, 2016, 800, 433-483.	1.4	6

#	Article	IF	CITATIONS
145	Origin of spurious oscillations in lattice Boltzmann simulations of oscillatory noncontinuum gas flows. Physical Review E, 2019, 100, 053317.	0.8	6
146	Dependence of the Far Field Effective Potential on Surface Inhomogeneities. Journal of Colloid and Interface Science, 1996, 182, 516-525.	5.0	5
147	Squeeze-Film Effect on Atomically Thin Resonators in the High-Pressure Limit. Nano Letters, 2021, 21, 7617-7624.	4.5	5
148	Inertial and viscous flywheel sensing of nanoparticles. Nature Communications, 2021, 12, 5099.	5.8	5
149	Integral equation analysis for first order vector correction of arbitrary profiles. IEEE Journal of Quantum Electronics, 1991, 27, 2159-2169.	1.0	4
150	Integral equation analysis for higher order modes and cutoff frequencies of arbitrary profiles. IEEE Journal of Quantum Electronics, 1991, 27, 976-984.	1.0	4
151	Theoretical study of the minor field component power in birefringent and nonbirefringent fibers. IEEE Journal of Quantum Electronics, 1992, 28, 1533-1538.	1.0	4
152	Scaling behavior for gravity induced flow of a yield stress material. Journal of Rheology, 2005, 49, 105-112.	1.3	4
153	Material characterisation of nanowires with intrinsic stress. Nanotechnology, 2017, 28, 355706.	1.3	4
154	Shear-induced buckling of a thin elastic disk undergoing spin-up. International Journal of Solids and Structures, 2019, 166, 75-82.	1.3	4
155	The automation of robust interatomic-force measurements. Review of Scientific Instruments, 2020, 91, 103702.	0.6	4
156	On the starting vortex generated by a translating and rotating flat plate. Journal of Fluid Mechanics, 2021, 906, .	1.4	4
157	Frequency Modulation Atomic Force Microscopy in Liquids. , 2008, , 315-350.		4
158	On the maximum drag reduction due to added polymers in Poiseuille flow. Journal of Fluid Mechanics, 2010, 659, 473-483.	1.4	3
159	Large-Area Nanofabrication of Partially Embedded Nanostructures for Enhanced Plasmonic Hot-Carrier Extraction. ACS Applied Nano Materials, 2019, 2, 1164-1169.	2.4	3
160	Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows. Physical Review Fluids, 2018, 3, .	1.0	3
161	First order correction for arbitrary anisotropic profiles by implementation of integral equation analysis. IEEE Journal of Quantum Electronics, 1992, 28, 194-204.	1.0	2
162	Acoustic flows in a slightly rarefied gas. Physical Review Fluids, 2020, 5, .	1.0	2

#	Article	IF	CITATIONS
163	A layer of yield-stress material on a flat plate that moves suddenly. Journal of Fluid Mechanics, 2022, 942, .	1.4	2
164	Electrodynamic ratchet motor. Physical Review E, 2009, 79, 030105.	0.8	1
165	Blunted-Cone Heat Shields of Atmospheric Entry Vehicles. AIAA Journal, 2009, 47, 1784-1787.	1.5	1
166	Solvent-Engineered Stress in Nanoscale Materials. ACS Applied Materials & Interfaces, 2018, 10, 44183-44189.	4.0	1
167	What is the oscillation amplitude of a vibrating cantilever?. Review of Scientific Instruments, 2019, 90, 086103.	0.6	1
168	Autonomous propulsion of nanorods trapped in an acoustic field – CORRIGENDUM. Journal of Fluid Mechanics, 2022, 935, .	1.4	1
169	<title>Coherent excitation of vibrational modes in nanoparticles and nanorods: what do we really measure?</title> ., 2003,,.		0
170	Vibrational spectroscopy and energy relaxation of nanocubes, nanoboxes, and nanocages. , 2006, , .		0
171	Fluid-structure interactions of mechanical sensors at nanometer scales. , 2014, , .		0
172	Publisher's Note: Lattice Boltzmann method for linear oscillatory noncontinuum flows [Phys. Rev. E89, 033305 (2014)]. Physical Review E, 2014, 90, .	0.8	0
173	Modelling apical columnar epithelium mechanics from circumferential contractile fibres. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1555-1568.	1.4	0
174	The impulsive swirl of a gas. Journal of Fluid Mechanics, 2021, 912, .	1.4	0