Divya M Chari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5791716/publications.pdf

Version: 2024-02-01

		361045	344852
53	1,339	20	36
papers	citations	h-index	g-index
53	53	53	1876
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transplantation of encapsulated autologous olfactory ensheathing cell populations expressing chondroitinase for spinal cord injury: A safety and feasibility study in companion dogs. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 788-798.	1.3	4
2	Enhancing the regenerative potential of stem cell-laden, clinical-grade implants through laminin engineering. Materials Science and Engineering C, 2021, 123, 111931.	3.8	5
3	Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury. Experimental Neurology, 2021, 340, 113660.	2.0	11
4	Stem cell sprays for neurological injuries: a perspective. Emerging Topics in Life Sciences, 2021, 5, 519-522.	1.1	2
5	Developing a New Strategy for Delivery of Neural Transplant Populations Using Precursor Cell Sprays and Specialized Cell Media. Advanced NanoBiomed Research, 2021, 1, 2100051.	1.7	1
6	In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials. Materials Science and Engineering C, 2021, 128, 112253.	3.8	6
7	Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a â€~target' stiffness for hydrogel synthesis in spinal cord injury. Journal of Tissue Engineering, 2020, 11, 204173142093480.	2.3	25
8	How can nanoparticles help neural cell transplantation therapy?. Nanomedicine, 2020, 15, 2103-2106.	1.7	1
9	Safe nanoengineering and incorporation of transplant populations in a neurosurgical grade biomaterial, DuraGen PlusTM, for protected cell therapy applications. Journal of Controlled Release, 2020, 321, 553-563.	4.8	7
10	Neurosurgical grade biomaterial, DuraGen TM , offers a promising matrix for protected delivery of neural stem cells in clinical cell therapies. Future Healthcare Journal, 2019, 6, 76-76.	0.6	0
11	Less is more: Investigating the influence of cellular nanoparticle load on transfection outcomes in neural cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1732-1737.	1.3	2
12	Electrophysiological properties of neurons grown on soft polymer scaffolds reveal the potential to develop neuromimetic culture environments. Integrative Biology (United Kingdom), 2019, 11, 395-403.	0.6	4
13	Nanoparticleâ€Based Imaging of Clinical Transplant Populations Encapsulated in Protective Polymer Matrices. Macromolecular Bioscience, 2019, 19, 1800389.	2.1	6
14	A Stoichiometrically Defined Neural Coculture Model to Screen Nanoparticles for Neurological Applications. Neuromethods, 2018, , 229-250.	0.2	1
15	A proteomic investigation into mechanisms underpinning corticosteroid effects on neural stem cells. Molecular and Cellular Neurosciences, 2018, 86, 30-40.	1.0	8
16	Noninvasive imaging of nanoparticle-labeled transplant populations within polymer matrices for neural cell therapy. Nanomedicine, 2018, 13, 1333-1348.	1.7	2
17	Magnetic Nanoparticleâ€Mediated Gene Delivery to Two―and Threeâ€Dimensional Neural Stem Cell Cultures: Magnetâ€Assisted Transfection and Multifection Approaches to Enhance Outcomes. Current Protocols in Stem Cell Biology, 2017, 40, 2D.19.1-2D.19.16.	3.0	10
18	Electrophysiological assessment of primary cortical neurons genetically engineered using iron oxide nanoparticles. Nano Research, 2017, 10, 2881-2890.	5. 8	4

#	Article	IF	Citations
19	A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells. Nanoscale, 2017, 9, 8560-8566.	2.8	6
20	Nanoengineering neural stem cells on biomimetic substrates using magnetofection technology. Nanoscale, 2016, 8, 17869-17880.	2.8	13
21	Part II: Functional delivery of a neurotherapeutic gene to neural stem cells using minicircle DNA and nanoparticles: Translational advantages for regenerative neurology. Journal of Controlled Release, 2016, 238, 300-310.	4.8	15
22	Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells. Advanced Healthcare Materials, 2016, 5, 841-849.	3.9	27
23	Using a 3-D multicellular simulation of spinal cord injury with live cell imaging to study the neural immune barrier to nanoparticle uptake. Nano Research, 2016, 9, 2384-2397.	5.8	5
24	Part I: Minicircle vector technology limits DNA size restrictions on ex vivo gene delivery using nanoparticle vectors: Overcoming a translational barrier in neural stem cell therapy. Journal of Controlled Release, 2016, 238, 289-299.	4.8	15
25	Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance. Nanomedicine, 2016, 11, 345-358.	1.7	2
26	â€~Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics. Journal of Controlled Release, 2016, 224, 136-145.	4.8	51
27	Using Magnetic Nanoparticles for Gene Transfer to Neural Stem Cells: Stem Cell Propagation Method Influences Outcomes. Journal of Functional Biomaterials, 2015, 6, 259-276.	1.8	20
28	Early Membrane Responses to Magnetic Particles are Predictors of Particle Uptake in Neural Stem Cells. Particle and Particle Systems Characterization, 2015, 32, 661-667.	1.2	9
29	Influence of Amplitude of Oscillating Magnetic Fields on Magnetic Nanoparticle-Mediated Gene Transfer to Astrocytes. Nano LIFE, 2015, 05, 1450006.	0.6	2
30	Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 19-29.	1.7	33
31	Development of a nanomaterial bio-screening platform for neurological applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 77-87.	1.7	10
32	THE INFLUENCE OF NICOTINAMIDE ON THE DEVELOPMENT OF NEURONS. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.111-e4.	0.9	0
33	An inÂvitro spinal cord injury model to screen neuroregenerative materials. Biomaterials, 2014, 35, 3756-3765.	5.7	44
34	A multicellular, neuro-mimetic model to study nanoparticle uptake in cells of the central nervous system. Integrative Biology (United Kingdom), 2014, 6, 855-861.	0.6	13
35	Identifying the Cellular Targets of Drug Action in the Central Nervous System Following Corticosteroid Therapy. ACS Chemical Neuroscience, 2014, 5, 51-63.	1.7	22
36	Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. Molecular and Cellular Therapies, 2014, 2, 23.	0.2	10

#	Article	IF	Citations
37	Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 291-295.	1.7	34
38	How do corticosteroids influence myelin genesis in the central nervous system?. Neural Regeneration Research, 2014, 9, 909.	1.6	10
39	Magnetic nanoparticle mediated transfection of neural stem cell suspension cultures is enhanced by applied oscillating magnetic fields. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 737-741.	1.7	63
40	Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine, 2013, 8, 951-968.	1.7	37
41	MAGNETIC NANOPARTICLE MEDIATED GENE DELIVERY IN OLIGODENDROGLIAL CELLS: A COMPARISON OF DIFFERENTIATED CELLS VERSUS PRECURSOR FORMS. Nano LIFE, 2013, 03, 1243001.	0.6	3
42	Fe3O4-PEI-RITC Magnetic Nanoparticles with Imaging and Gene Transfer Capability: Development of a Tool for Neural Cell Transplantation Therapies. Pharmaceutical Research, 2012, 29, 1328-1343.	1.7	52
43	Magnetic Nanoparticle-Mediated Gene Transfer to Oligodendrocyte Precursor Cell Transplant Populations Is Enhanced by Magnetofection Strategies. ACS Nano, 2011, 5, 6527-6538.	7.3	91
44	The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials, 2011, 32, 2274-2284.	5.7	81
45	Magnetic Nanoparticle Labeling of Astrocytes Derived for Neural Transplantation. Tissue Engineering - Part C: Methods, 2011, 17, 89-99.	1.1	39
46	Robust Uptake of Magnetic Nanoparticles (MNPs) by Central Nervous System (CNS) Microglia: Implications for Particle Uptake in Mixed Neural Cell Populations. International Journal of Molecular Sciences, 2010, 11, 967-981.	1.8	50
47	Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by â€~magnetofection': effects of static and oscillating fields. Nanomedicine, 2010, 5, 217-232.	1.7	80
48	Remyelination In Multiple Sclerosis. International Review of Neurobiology, 2007, 79, 589-620.	0.9	118
49	Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS. Experimental Neurology, 2006, 198, 145-153.	2.0	21
50	Corticosteroids delay remyelination of experimental demyelination in the rodent central nervous system. Journal of Neuroscience Research, 2006, 83, 594-605.	1.3	67
51	Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia, 2002, 37, 307-313.	2.5	141
52	Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia, 2002, 37, 307.	2.5	8
53	Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia, 2002, 37, 307-13.	2.5	48