
TamÃ;s Haraszti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5791495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture. Advanced Science, 2022, 9, e2103554.	11.2	29
2	Brushâ€Like Interface on Surfaceâ€Attached Hydrogels Repels Proteins and Bacteria. Macromolecular Bioscience, 2022, 22, e2200025.	4.1	13
3	lonic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life. Advanced Science, 2022, 9, e2200617.	11.2	6
4	Cells feel the beat – temporal effect of cyclic mechanical actuation on muscle cells. Applied Materials Today, 2022, 27, 101492.	4.3	9
5	Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria. Advanced Materials, 2022, 34, e2202364.	21.0	7
6	Fibronectin anchoring to viscoelastic poly(dimethylsiloxane) elastomers controls fibroblast mechanosensing and directional motility. Biomaterials, 2022, 287, 121646.	11.4	2
7	Unraveling topology-induced shape transformations in dendrimersomes. Soft Matter, 2021, 17, 254-267.	2.7	18
8	Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomaterials Science, 2021, 9, 4329-4342.	5.4	16
9	Enhanced Concanavalinâ€A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions. Angewandte Chemie, 2021, 133, 8433-8441.	2.0	0
10	Enhanced Concanavalinâ€A Binding to Preorganized Mannose Nanoarrays in Glycodendrimersomes Revealed Multivalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 8352-8360.	13.8	31
11	Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. Advanced Healthcare Materials, 2021, 10, e2100874.	7.6	7
12	How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?. Advanced Healthcare Materials, 2020, 9, e2000886.	7.6	14
13	Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation. Macromolecular Rapid Communications, 2020, 41, 2000191.	3.9	15
14	Substrate Resistance to Traction Forces Controls Fibroblast Polarization. Biophysical Journal, 2020, 119, 2558-2572.	0.5	10
15	A Layer-by-Layer Single-Cell Coating Technique To Produce Injectable Beating Mini Heart Tissues via Microfluidics. Biomacromolecules, 2019, 20, 3746-3754.	5.4	42
16	Membrane-Mimetic Dendrimersomes Engulf Living Bacteria via Endocytosis. Nano Letters, 2019, 19, 5732-5738.	9.1	38
17	Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS Applied Materials & Interfaces, 2019, 11, 41091-41099.	8.0	26
18	Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. Biomacromolecules, 2019, 20, 4075-4087.	5.4	38

TamÃis Haraszti

#	Article	IF	CITATIONS
19	Compartmentalized Jet Polymerization as a Highâ€Resolution Process to Continuously Produce Anisometric Microgel Rods with Adjustable Size and Stiffness. Advanced Materials, 2019, 31, e1903668.	21.0	40
20	Cellular responses to beating hydrogels to investigate mechanotransduction. Nature Communications, 2019, 10, 4027.	12.8	60
21	Solvent-Induced Nanotopographies of Single Microfibers Regulate Cell Mechanotransduction. ACS Applied Materials & Interfaces, 2019, 11, 7671-7685.	8.0	32
22	Cell Encapsulation in Soft, Anisometric Poly(ethylene) Glycol Microgels Using a Novel Radicalâ€Free Microfluidic System. Small, 2019, 15, e1900692.	10.0	39
23	Reversible Laser Threshold Modulation in Dithienylethene Conjugated Polymer Blends: A Concept for <i>q</i> Switching in Organic DFB Lasers. ACS Photonics, 2019, 6, 558-564.	6.6	5
24	Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials, 2018, 163, 128-141.	11.4	86
25	Dissipative disassembly of colloidal microgel crystals driven by a coupled cyclic reaction network. Soft Matter, 2018, 14, 910-915.	2.7	27
26	Tailored environments to study motile cells and pathogens. Cellular Microbiology, 2018, 20, e12820.	2.1	13
27	A catalyst-free, temperature controlled gelation system for in-mold fabrication of microgels. Chemical Communications, 2018, 54, 6943-6946.	4.1	28
28	Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites. Advanced Healthcare Materials, 2017, 6, 1601178.	7.6	17
29	Fibronectin promotes directional persistence in fibroblast migration through interactions with both its cell-binding and heparin-binding domains. Scientific Reports, 2017, 7, 3711.	3.3	33
30	Enhanced Biological Activity of BMPâ€2 Bound to Surfaceâ€Grafted Heparan Sulfate. Advanced Biology, 2017, 1, e1600041.	3.0	24
31	An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells. Small, 2017, 13, 1702207.	10.0	147
32	Substrate engagement of integrins α5β1 and αvβ3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin. Scientific Reports, 2016, 6, 23258.	3.3	50
33	Leukocyte responses to immobilized patterns of CXCL8. Colloids and Surfaces B: Biointerfaces, 2016, 142, 385-391.	5.0	4
34	Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin. PLoS ONE, 2015, 10, e0136432.	2.5	5
35	Nanoscale Control of Surface Immobilized BMP-2: Toward a Quantitative Assessment of BMP-Mediated Signaling Events. Nano Letters, 2015, 15, 1526-1534.	9.1	87
36	Nano-Scale Morphology of Melanosomes Revealed by Small-Angle X-Ray Scattering. PLoS ONE, 2014, 9, e90884.	2.5	11

TamÃis Haraszti

#	Article	IF	CITATIONS
37	\$\$upalpha 5upbeta \$\$ α 5 β 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments. Computational Mechanics, 2014, 53, 499-510.	4.0	6
38	Support and challenges to the melanosomal casing model based on nanoscale distribution of metals within iris melanosomes detected by <scp>X</scp> â€ray fluorescence analysis. Pigment Cell and Melanoma Research, 2014, 27, 831-834.	3.3	13
39	Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 2013, 8, 36.	1.6	81
40	Toward Controlling the Formation, Degradation Behavior, and Properties of Hydrogels Synthesized by Azaâ€Michael Reactions. Macromolecular Chemistry and Physics, 2013, 214, 1865-1873.	2.2	18
41	Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels. Scientific Reports, 2013, 3, 2043.	3.3	13
42	Splinelike interpolation in particle tracking microrheology. Physical Review E, 2012, 86, 011501.	2.1	7
43	Python algorithms in particle tracking microrheology. Chemistry Central Journal, 2012, 6, 144.	2.6	8
44	A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy. PLoS ONE, 2012, 7, e37296.	2.5	29
45	Flow conditions in the vicinity of microstructured interfaces studied by holography and implications for the assembly of artificial actin networks. Physical Chemistry Chemical Physics, 2011, 13, 13395.	2.8	10
46	Measuring Forces between Two Single Actin Filaments during Bundle Formation. Nano Letters, 2011, 11, 3676-3680.	9.1	28
47	Spectral analysis by XANES reveals that GPNMB influences the chemical composition of intact melanosomes. Pigment Cell and Melanoma Research, 2011, 24, 187-196.	3.3	7
48	STXMPy: a new software package for automated region of interest selection and statistical analysis of XANES data. Chemistry Central Journal, 2010, 4, 11.	2.6	4
49	BIOMIMETIC MODELS OF THE ACTIN CORTEX. Biophysical Reviews and Letters, 2009, 04, 17-32.	0.8	6
50	Biomimetic Fâ€Actin Cortex Models. ChemPhysChem, 2009, 10, 2777-2786.	2.1	7
51	Optical force sensor array in a microfluidic device based on holographic optical tweezers. Lab on A Chip, 2009, 9, 661.	6.0	36
52	Nanoscale Arrangement of Apoptotic Ligands Reveals a Demand for a Minimal Lateral Distance for Efficient Death Receptor Activation. Nano Letters, 2009, 9, 4240-4245.	9.1	42
53	Scanning transmission X-ray microscopic analysis of purified melanosomes of the mouse iris. Micron, 2006, 37, 689-698.	2.2	8
54	Layer-by-layer self-assembly preparation of layered double hydroxide/polyelectrolyte nanofilms monitored by surface plasmon resonance spectroscopy. Colloid and Polymer Science, 2005, 283, 937-945.	2.1	21

TamÃis Haraszti

#	Article	IF	CITATIONS
55	Light scattering and the fractal properties of hydrophilic and hydrophobic SiO 2 aggregates in ethanol-toluene binary mixtures. Colloid and Polymer Science, 2002, 280, 736-743.	2.1	3
56	Thickness dependence of absorption of molecular thin films studied using FECO spectroscopy. Studies in Surface Science and Catalysis, 2001, 132, 881-884.	1.5	7
57	Slurry nebulization ICP-AES spectrometry method for the determination of tin in organotin(IV) complexes. Talanta, 2000, 52, 1061-1067.	5.5	13
58	Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycationâ^'Montmorillonite Ultrathin Films. Journal of the American Chemical Society, 1997, 119, 6821-6832.	13.7	251
59	Nanorheology and Nanotribology of Two-Component Liquid Crystal. SAE International Journal of Fuels and Lubricants, 0, 1, 1517-1523.	0.2	12