Shuijin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579078/publications.pdf

Version: 2024-02-01

		257450	189892
53	3,419	24	50
papers	citations	h-index	g-index
57	57	57	3036
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Combined analysis of mRNA and miRNA transcriptomes reveals the regulatory mechanism of PVY resistance in tobacco. Industrial Crops and Products, 2022, 176, 114322.	5.2	3
2	Root Illumination Promotes Seedling Growth and Inhibits Gossypol Biosynthesis in Upland Cotton. Plants, 2022, 11, 728.	3.5	3
3	Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (<i>Gossypium</i>) species. Plant Journal, 2022, 111, 872-887.	5.7	8
4	Feasibility study on the use of near-infrared spectroscopy for rapid and nondestructive determination of gossypol content in intact cottonseeds. Journal of Cotton Research, 2021, 4, .	2.5	4
5	Whole-genome resequencing of 240 Gossypium barbadense accessions reveals genetic variation and genes associated with fiber strength and lint percentage. Theoretical and Applied Genetics, 2021, 134, 3249-3261.	3.6	19
6	Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Industrial Crops and Products, 2021, 169, 113671.	5.2	34
7	Determination of Oxidative Stress and Antioxidant Enzyme Activity for Physiological Phenotyping During Heavy Metal Exposure. Methods in Molecular Biology, 2021, 2326, 241-249.	0.9	1
8	Saltâ€tolerance diversity in diploid and polyploid cotton (<i>Gossypium</i>) species. Plant Journal, 2020, 101, 1135-1151.	5.7	34
9	Physiological, ultrastructural, biochemical, and molecular responses of glandless cotton to hexavalent chromium (Cr6+) exposure. Environmental Pollution, 2020, 266, 115394.	7.5	21
10	IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops and Products, 2020, 155, 112788 .	5.2	39
11	Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. Planta, 2020, 251, 81.	3.2	21
12	Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biology, 2020, 20, 88.	3.6	21
13	Reduced Glutathione Protects Subcellular Compartments From Pb-Induced ROS Injury in Leaves and Roots of Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2020, 11, 412.	3.6	31
14	Melatonin enhances cotton immunity to <i>Verticillium</i> wilt via manipulating lignin and gossypol biosynthesis. Plant Journal, 2019, 100, 784-800.	5.7	107
15	Determination of manganese content in cottonseed meal using near-infrared spectrometry and multivariate calibration. Journal of Cotton Research, 2019, 2, .	2.5	2
16	Genome-wide analysis of genetic variations between dominant and recessive NILs of glanded and glandless cottons. Scientific Reports, 2019, 9, 9226.	3.3	7
17	Identification and profiling of upland cotton microRNAs at fiber initiation stage under exogenous IAA application. BMC Genomics, 2019, 20, 421.	2.8	19
18	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51, 739-748.	21.4	568

#	Article	IF	CITATIONS
19	Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiologia Plantarum, 2019, 165, 343-355.	5.2	71
20	Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC Genomics, 2018, 19, 910.	2.8	12
21	QTL Mapping and Heterosis Analysis for Fiber Quality Traits Across Multiple Genetic Populations and Environments in Upland Cotton. Frontiers in Plant Science, 2018, 9, 1364.	3.6	12
22	Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Gossypium. Molecules, 2018, 23, 193.	3.8	13
23	Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Scientific Reports, 2017, 7, 45711.	3.3	31
24	QTL mapping with different genetic systems for nine non-essential amino acids of cottonseeds. Molecular Genetics and Genomics, 2017, 292, 671-684.	2.1	7
25	Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation. Plant Cell, 2017, 29, 2027-2046.	6.6	66
26	Determination of gossypol content in cottonseeds by near infrared spectroscopy based on Monte Carlo uninformative variable elimination and nonlinear calibration methods. Food Chemistry, 2017, 221, 990-996.	8.2	43
27	Drinking Water Quality Status and Contamination in Pakistan. BioMed Research International, 2017, 2017, 1-18.	1.9	245
28	A New Sythetic Hybrid (A1D5) between Gossypium herbaceum and G. raimondii and Its Morphological, Cytogenetic, Molecular Characterization. PLoS ONE, 2017, 12, e0169833.	2.5	5
29	Comparative genomic study of ALDH gene superfamily in Gossypium: A focus on Gossypium hirsutum under salt stress. PLoS ONE, 2017, 12, e0176733.	2.5	21
30	Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic Study and their Expression under Salt Stress. Frontiers in Plant Science, 2016, 7, 139.	3.6	81
31	Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population. Frontiers in Plant Science, 2016, 7, 1356.	3.6	105
32	Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii. Scientific Reports, 2016, 6, 22980.	3.3	103
33	A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes and Genomics, 2016, 38, 1013-1020.	1.4	10
34	Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7, 10456.	12.8	130
35	Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature. PLoS ONE, 2015, 10, e0123281.	2.5	37
36	Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. BioMetals, 2015, 28, 1063-1078.	4.1	29

#	Article	IF	CITATIONS
37	Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33, 524-530.	17.5	1,064
38	Dissecting Genetic Architecture Underlying Seed Traits in Multiple Environments. Genetics, 2015, 199, 61-71.	2.9	4
39	Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Plants. PLoS ONE, 2014, 9, e94172.	2.5	50
40	MicroRNA–target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Functional and Integrative Genomics, 2014, 14, 507-515.	3.5	36
41	Genome-Wide Survey and Expression Analysis of Calcium-Dependent Protein Kinase in Gossypium raimondii. PLoS ONE, 2014, 9, e98189.	2.5	77
42	RELATIONSHIP BETWEEN ENDOGENOUS SALICYLIC ACID AND ANTIOXIDANT ENZYME ACTIVITIES IN MAIZE SEEDLINGS UNDER CHILLING STRESS. Experimental Agriculture, 2013, 49, 295-308.	0.9	14
43	Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regulation, 2011, 63, 279-290.	3.4	81
44	An interspecific somatic hybrid between upland cotton (G. hirsutum L. cv. ZDM-3) and wild diploid cotton (G. klotzschianum A.). Plant Cell, Tissue and Organ Culture, 2011, 106, 425-433.	2.3	9
45	Effects of pigment glands and gossypol on growth, development and insecticide-resistance of cotton bollworm (Heliothis armigera (Hýbner)). Crop Protection, 2010, 29, 813-819.	2.1	33
46	Genetic Characterization of a New Growth Habit Mutant in Tomato (Solanum lycopersicum). Plant Molecular Biology Reporter, 2009, 27, 431-438.	1.8	7
47	The effects of cotton root exudates on the growth and development of Verticillium dahliae. Frontiers of Agriculture in China, 2008, 2, 435-440.	0.2	10
48	Effect of in vivo plant preservation on the fertility and chromosome configuration of a quadri-specific hybrid derived from 4 cultivated cotton species. Frontiers of Agriculture in China, 2008, 2, 380-385.	0.2	0
49	Characterization of Pigmentation and Cellulose Synthesis in Colored Cotton Fibers. Crop Science, 2007, 47, 1540-1546.	1.8	57
50	Breeding, introgression and inheritance of delayed gland morphogenesis trait fromGosspium bickii into upland cotton germplasm. Science Bulletin, 2004, 49, 2470-2476.	1.7	0
51	Inheritance of the delayed gland morphogenesis trait in Australian wild species ofGossypium. Science Bulletin, 2001, 46, 1168-1174.	1.7	10
52	Effects of pigment glands and gossypol on somatic cell culture of upland cotton (Gossypium) Tj ETQq0 0 0 rgBT	Oyerlock	19 ₃ Tf 50 142
53	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. , 0, .		1