## Shuijin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/579078/publications.pdf Version: 2024-02-01



<u> Снишы 7ни</u>

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genome sequence of cultivated Upland cotton (GossypiumÂhirsutum TM-1) provides insights into<br>genome evolution. Nature Biotechnology, 2015, 33, 524-530.                                                                           | 17.5 | 1,064     |
| 2  | Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51, 739-748.                                                                     | 21.4 | 568       |
| 3  | Drinking Water Quality Status and Contamination in Pakistan. BioMed Research International, 2017, 2017, 1-18.                                                                                                                        | 1.9  | 245       |
| 4  | Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7, 10456.                                                                                                                                     | 12.8 | 130       |
| 5  | Melatonin enhances cotton immunity to <i>Verticillium</i> wilt via manipulating lignin and gossypol<br>biosynthesis. Plant Journal, 2019, 100, 784-800.                                                                              | 5.7  | 107       |
| 6  | Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland<br>Cotton Recombinant Inbred Lines Population. Frontiers in Plant Science, 2016, 7, 1356.                                          | 3.6  | 105       |
| 7  | Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii. Scientific Reports, 2016, 6, 22980.                                                                               | 3.3  | 103       |
| 8  | Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regulation, 2011, 63, 279-290.                                                                                                         | 3.4  | 81        |
| 9  | Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic<br>Study and their Expression under Salt Stress. Frontiers in Plant Science, 2016, 7, 139.                                         | 3.6  | 81        |
| 10 | Genome-Wide Survey and Expression Analysis of Calcium-Dependent Protein Kinase in Gossypium<br>raimondii. PLoS ONE, 2014, 9, e98189.                                                                                                 | 2.5  | 77        |
| 11 | Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiologia Plantarum, 2019, 165, 343-355.                                 | 5.2  | 71        |
| 12 | Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose<br>Transporter Genes during Cotton Fiber Elongation. Plant Cell, 2017, 29, 2027-2046.                                             | 6.6  | 66        |
| 13 | Characterization of Pigmentation and Cellulose Synthesis in Colored Cotton Fibers. Crop Science, 2007, 47, 1540-1546.                                                                                                                | 1.8  | 57        |
| 14 | Species-Specific Expansion and Molecular Evolution of the 3-hydroxy-3-methylglutaryl Coenzyme A<br>Reductase (HMGR) Gene Family in Plants. PLoS ONE, 2014, 9, e94172.                                                                | 2.5  | 50        |
| 15 | Determination of gossypol content in cottonseeds by near infrared spectroscopy based on Monte<br>Carlo uninformative variable elimination and nonlinear calibration methods. Food Chemistry, 2017,<br>221, 990-996.                  | 8.2  | 43        |
| 16 | IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via<br>regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops<br>and Products, 2020, 155, 112788. | 5.2  | 39        |
| 17 | Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression<br>Profiles in Gossypium raimondii Under Low Temperature. PLoS ONE, 2015, 10, e0123281.                                             | 2.5  | 37        |
| 18 | MicroRNA–target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).<br>Functional and Integrative Genomics, 2014, 14, 507-515.                                                                                  | 3.5  | 36        |

Shuijin Zhu

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Saltâ€ŧolerance diversity in diploid and polyploid cotton ( <i>Gossypium</i> ) species. Plant Journal, 2020, 101, 1135-1151.                                                                                                                    | 5.7 | 34        |
| 20 | Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis,<br>scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Industrial<br>Crops and Products, 2021, 169, 113671. | 5.2 | 34        |
| 21 | Effects of pigment glands and gossypol on growth, development and insecticide-resistance of cotton<br>bollworm (Heliothis armigera (Hübner)). Crop Protection, 2010, 29, 813-819.                                                               | 2.1 | 33        |
| 22 | Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Scientific Reports, 2017, 7, 45711.                                                                 | 3.3 | 31        |
| 23 | Reduced Glutathione Protects Subcellular Compartments From Pb-Induced ROS Injury in Leaves and<br>Roots of Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2020, 11, 412.                                                    | 3.6 | 31        |
| 24 | Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. BioMetals, 2015, 28, 1063-1078.                                            | 4.1 | 29        |
| 25 | Physiological, ultrastructural, biochemical, and molecular responses of glandless cotton to hexavalent chromium (Cr6+) exposure. Environmental Pollution, 2020, 266, 115394.                                                                    | 7.5 | 21        |
| 26 | Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. Planta, 2020, 251, 81.                                                                                                                             | 3.2 | 21        |
| 27 | Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biology, 2020, 20, 88.                                                                                                                                   | 3.6 | 21        |
| 28 | Comparative genomic study of ALDH gene superfamily in Gossypium: A focus on Gossypium hirsutum under salt stress. PLoS ONE, 2017, 12, e0176733.                                                                                                 | 2.5 | 21        |
| 29 | Identification and profiling of upland cotton microRNAs at fiber initiation stage under exogenous IAA application. BMC Genomics, 2019, 20, 421.                                                                                                 | 2.8 | 19        |
| 30 | Whole-genome resequencing of 240 Gossypium barbadense accessions reveals genetic variation and genes associated with fiber strength and lint percentage. Theoretical and Applied Genetics, 2021, 134, 3249-3261.                                | 3.6 | 19        |
| 31 | RELATIONSHIP BETWEEN ENDOGENOUS SALICYLIC ACID AND ANTIOXIDANT ENZYME ACTIVITIES IN MAIZE SEEDLINGS UNDER CHILLING STRESS. Experimental Agriculture, 2013, 49, 295-308.                                                                         | 0.9 | 14        |
| 32 | Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A<br>Reductase (HMGR) Gene Family in Gossypium. Molecules, 2018, 23, 193.                                                                        | 3.8 | 13        |
| 33 | Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC Genomics, 2018, 19, 910.                                                                                | 2.8 | 12        |
| 34 | QTL Mapping and Heterosis Analysis for Fiber Quality Traits Across Multiple Genetic Populations and Environments in Upland Cotton. Frontiers in Plant Science, 2018, 9, 1364.                                                                   | 3.6 | 12        |
| 35 | Inheritance of the delayed gland morphogenesis trait in Australian wild species ofGossypium. Science Bulletin, 2001, 46, 1168-1174.                                                                                                             | 1.7 | 10        |
| 36 | The effects of cotton root exudates on the growth and development of Verticillium dahliae.<br>Frontiers of Agriculture in China, 2008, 2, 435-440.                                                                                              | 0.2 | 10        |

**Shuijin Zhu** 

| #  | Article                                                                                                                                                                                                       | IF               | CITATIONS                 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|
| 37 | A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes and Genomics, 2016, 38, 1013-1020.                                                  | 1.4              | 10                        |
| 38 | An interspecific somatic hybrid between upland cotton (G. hirsutum L. cv. ZDM-3) and wild diploid cotton (G. klotzschianum A.). Plant Cell, Tissue and Organ Culture, 2011, 106, 425-433.                     | 2.3              | 9                         |
| 39 | Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton<br>( <i>Gossypium</i> ) species. Plant Journal, 2022, 111, 872-887.                                        | 5.7              | 8                         |
| 40 | Genetic Characterization of a New Growth Habit Mutant in Tomato (Solanum lycopersicum). Plant<br>Molecular Biology Reporter, 2009, 27, 431-438.                                                               | 1.8              | 7                         |
| 41 | QTL mapping with different genetic systems for nine non-essential amino acids of cottonseeds.<br>Molecular Genetics and Genomics, 2017, 292, 671-684.                                                         | 2.1              | 7                         |
| 42 | Genome-wide analysis of genetic variations between dominant and recessive NILs of glanded and glandless cottons. Scientific Reports, 2019, 9, 9226.                                                           | 3.3              | 7                         |
| 43 | A New Sythetic Hybrid (A1D5) between Gossypium herbaceum and C. raimondii and Its Morphological,<br>Cytogenetic, Molecular Characterization. PLoS ONE, 2017, 12, e0169833.                                    | 2.5              | 5                         |
| 44 | Dissecting Genetic Architecture Underlying Seed Traits in Multiple Environments. Genetics, 2015, 199, 61-71.                                                                                                  | 2.9              | 4                         |
| 45 | Feasibility study on the use of near-infrared spectroscopy for rapid and nondestructive determination of gossypol content in intact cottonseeds. Journal of Cotton Research, 2021, 4, .                       | 2.5              | 4                         |
| 46 | Effects of pigment glands and gossypol on somatic cell culture of upland cotton (Gossypium) Tj ETQqO 0 0 rgBT                                                                                                 | /Oyerlock<br>1.7 | 10 <sub>3</sub> Tf 50 382 |
| 47 | Combined analysis of mRNA and miRNA transcriptomes reveals the regulatory mechanism of PVY resistance in tobacco. Industrial Crops and Products, 2022, 176, 114322.                                           | 5.2              | 3                         |
| 48 | Root Illumination Promotes Seedling Growth and Inhibits Gossypol Biosynthesis in Upland Cotton.<br>Plants, 2022, 11, 728.                                                                                     | 3.5              | 3                         |
| 49 | Determination of manganese content in cottonseed meal using near-infrared spectrometry and multivariate calibration. Journal of Cotton Research, 2019, 2, .                                                   | 2.5              | 2                         |
| 50 | Determination of Oxidative Stress and Antioxidant Enzyme Activity for Physiological Phenotyping<br>During Heavy Metal Exposure. Methods in Molecular Biology, 2021, 2326, 241-249.                            | 0.9              | 1                         |
| 51 | Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. , 0, .                                                                           |                  | 1                         |
| 52 | Breeding, introgression and inheritance of delayed gland morphogenesis trait fromGosspium bickii<br>into upland cotton germplasm. Science Bulletin, 2004, 49, 2470-2476.                                      | 1.7              | 0                         |
| 53 | Effect of in vivo plant preservation on the fertility and chromosome configuration of a quadri-specific hybrid derived from 4 cultivated cotton species. Frontiers of Agriculture in China, 2008, 2, 380-385. | 0.2              | 0                         |
|    |                                                                                                                                                                                                               |                  |                           |