
## Akio Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790629/publications.pdf Version: 2024-02-01



Δείο Suzuri

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stability of hydrous melt at the base of the Earth's upper mantle. Nature, 2006, 439, 192-194.                                                                                             | 13.7 | 165       |
| 2  | Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth and<br>Planetary Science Letters, 2005, 240, 589-604.                                         | 1.8  | 144       |
| 3  | Ponded melt at the boundary between the lithosphere and asthenosphere. Nature Geoscience, 2013, 6, 1041-1044.                                                                              | 5.4  | 144       |
| 4  | A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000 °C. Physics and Chemistry of Minerals, 2000, 27, 689-693.                                                                       | 0.3  | 134       |
| 5  | Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Physics of the Earth and Planetary Interiors, 2001, 124, 105-117. | 0.7  | 125       |
| 6  | In situ determination of the phase boundary between Wadsleyite and Ringwoodite in Mg2SiO4.<br>Geophysical Research Letters, 2000, 27, 803-806.                                             | 1.5  | 121       |
| 7  | Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities. American Mineralogist, 2007, 92, 1093-1104.               | 0.9  | 111       |
| 8  | In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: Implication for the 660-km discontinuity. Earth and Planetary Science Letters, 2005, 238, 311-328.   | 1.8  | 108       |
| 9  | Wet subduction versus cold subduction. Geophysical Research Letters, 2005, 32, .                                                                                                           | 1.5  | 104       |
| 10 | Stability field of new hydrous phase, δ-AlOOH, with implications for water transport into the deep<br>mantle. Geophysical Research Letters, 2001, 28, 3991-3993.                           | 1.5  | 91        |
| 11 | The viscosity of CaMgSi2O6 liquid at pressures up to 13GPa. Physics of the Earth and Planetary Interiors, 2003, 139, 45-54.                                                                | 0.7  | 87        |
| 12 | Viscosity of albite melt at high pressure and high temperature. Physics and Chemistry of Minerals, 2002, 29, 159-165.                                                                      | 0.3  | 81        |
| 13 | Melting relations of peridotite and the density crossover in planetary mantles. Chemical Geology, 1995, 120, 207-221.                                                                      | 1.4  | 77        |
| 14 | Density of peridotite melts at high pressure. Physics and Chemistry of Minerals, 2003, 30, 449-456.                                                                                        | 0.3  | 73        |
| 15 | Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics and Planetary Science, 2005, 40, 855-868.                                                                  | 0.7  | 68        |
| 16 | Flotation of Diamond in Mantle Melt at High Pressure. Science, 1995, 269, 216-218.                                                                                                         | 6.0  | 66        |
| 17 | Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method. Earth and Planetary Science Letters, 2009, 287, 293-297.                               | 1.8  | 63        |
| 18 | The effect of temperature, pressure, and sulfur content on viscosity of the Fe–FeS melt. Earth and<br>Planetary Science Letters, 2001, 190, 93-101.                                        | 1.8  | 61        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth and Planetary Science Letters, 2013, 371-372, 103-111.                                                                         | 1.8 | 60        |
| 20 | Density and thermal expansion of a peridotite melt at high pressure. Physics of the Earth and Planetary Interiors, 1998, 107, 53-61.                                                                                                                | 0.7 | 57        |
| 21 | Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4. Physics of the Earth and Planetary Interiors, 2002, 129, 153-171.                                                                                                             | 0.7 | 56        |
| 22 | Stability of carbonated magmas at the base of the Earth's upper mantle. Geophysical Research Letters, 2007, 34, .                                                                                                                                   | 1.5 | 55        |
| 23 | Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. American Mineralogist, 2009, 94, 1479-1482.                                                     | 0.9 | 54        |
| 24 | Symmetrization driven spin transition in ε-FeOOH at high pressure. Earth and Planetary Science Letters,<br>2013, 379, 49-55.                                                                                                                        | 1.8 | 54        |
| 25 | In situ X ray observation of high-pressure phase transitions of MgSiO3and thermal expansion of<br>MgSiO3perovskite at 25 GPa by double-stage multianvil system. Journal of Geophysical Research, 1995,<br>100, 20475-20481.                         | 3.3 | 51        |
| 26 | Diamond-Graphite Relationships in Ultrahigh-pressure Metamorphic Rocks from the Kokchetav Massif,<br>Northern Kazakhstan. Journal of Petrology, 2010, 51, 763-783.                                                                                  | 1.1 | 51        |
| 27 | Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km<br>discontinuity. Geophysical Research Letters, 2004, 31, .                                                                                     | 1.5 | 50        |
| 28 | Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (l̂´-AlOOH) up to<br>1.2Mbar: Possibility of H contribution to the core density deficit. Physics of the Earth and Planetary<br>Interiors, 2012, 194-195, 18-24. | 0.7 | 50        |
| 29 | Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in<br>the Earth's upper mantle. Science Advances, 2015, 1, e1500360.                                                                                  | 4.7 | 49        |
| 30 | Pressure-volume-temperature equation of state of tungsten carbide to 32 GPa and 1673 K. Journal of<br>Applied Physics, 2010, 108, .                                                                                                                 | 1.1 | 48        |
| 31 | Transformation textures, mechanisms of formation of highâ€pressure minerals in shock melt veins of<br>L6 chondrites, and pressureâ€ŧemperature conditions of the shock events. Meteoritics and Planetary<br>Science, 2009, 44, 1771-1786.           | 0.7 | 46        |
| 32 | Hydrogen partitioning between iron and ringwoodite: Implications for water transport into the<br>Martian core. Earth and Planetary Science Letters, 2009, 287, 463-470.                                                                             | 1.8 | 44        |
| 33 | Viscosity of silicate melts in CaMgSi2O6–NaAlSi2O6 system at high pressure. Physics and Chemistry of<br>Minerals, 2005, 32, 140-145.                                                                                                                | 0.3 | 43        |
| 34 | Density of dry peridotite magma at high pressure using an X-ray absorption method. American<br>Mineralogist, 2010, 95, 144-147.                                                                                                                     | 0.9 | 43        |
| 35 | The effect of sulfur content on density of the liquid Fe–S at high pressure. Physics and Chemistry of Minerals, 2008, 35, 417-423.                                                                                                                  | 0.3 | 42        |
| 36 | Chemical Reactions Between Fe and H <sub>2</sub> 0 up to Megabar Pressures and Implications for<br>Water Storage in the Earth's Mantle and Core. Geophysical Research Letters, 2018, 45, 1330-1338.                                                 | 1.5 | 42        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Density measurement of Fe <sub>3</sub> C liquid using Xâ€ray absorption image up to 10 GPa and effect of<br>light elements on compressibility of liquid iron. Journal of Geophysical Research, 2010, 115, .       | 3.3 | 40        |
| 38 | Viscosity of the albite melt to 7 GPa at 2000 K. Earth and Planetary Science Letters, 2000, 175, 87-92.                                                                                                           | 1.8 | 39        |
| 39 | Effect of pressure on the viscosity of Fe-S and Fe-C liquids up to 16 GPa. Geophysical Research Letters, 2006, 33, .                                                                                              | 1.5 | 36        |
| 40 | Formation of metastable assemblages and mechanisms of the grain-size reduction in the Postspinel transformation of Mg2SiO4. Geophysical Research Letters, 2000, 27, 807-810.                                      | 1.5 | 35        |
| 41 | Density of high-Ti basalt magma at high pressure and origin of heterogeneities in the lunar mantle.<br>Earth and Planetary Science Letters, 2010, 299, 285-289.                                                   | 1.8 | 35        |
| 42 | Pressure and temperature dependence of the viscosity of a NaAlSi2O6 melt. Physics and Chemistry of Minerals, 2011, 38, 59-64.                                                                                     | 0.3 | 35        |
| 43 | Radiographic study on the viscosity of the Fe-FeS melts at the pressure of 5 to 7 GPa. American<br>Mineralogist, 2001, 86, 578-582.                                                                               | 0.9 | 34        |
| 44 | Melting relations of hydrous and dry mantle compositions and the genesis of komatiites. Geophysical<br>Research Letters, 1998, 25, 2201-2204.                                                                     | 1.5 | 33        |
| 45 | High-pressure X-ray diffraction study of ε-FeOOH. Physics and Chemistry of Minerals, 2010, 37, 153-157.                                                                                                           | 0.3 | 33        |
| 46 | Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption. American<br>Mineralogist, 2011, 96, 864-868.                                                                              | 0.9 | 33        |
| 47 | Viscosity change and structural transition of Molten Fe at 5 GPa. Geophysical Research Letters, 2002, 29, 68-1-68-3.                                                                                              | 1.5 | 32        |
| 48 | Density of Fe-3.5 wt% C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron. Physics of the Earth and Planetary Interiors, 2013, 224, 77-82.                       | 0.7 | 31        |
| 49 | Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Feâ $\in$ S system. Physics of the Earth and Planetary Interiors, 2016, 257, 230-239.                              | 0.7 | 31        |
| 50 | Yamato 792947, 793408 and 82038: The most primitive H chondrites, with abundant refractory inclusions. Meteoritics and Planetary Science, 2002, 37, 1417-1434.                                                    | 0.7 | 30        |
| 51 | Thermal equation of state of superhydrous phase B to 27GPa and 1373K. Physics of the Earth and Planetary Interiors, 2007, 164, 142-160.                                                                           | 0.7 | 30        |
| 52 | Intrusion of UHP metamorphic rocks into the upper crust of Kyrgyzian Tien-Shan: P-T path and<br>metamorphic age of the Makbal Complex. Journal of Mineralogical and Petrological Sciences, 2010,<br>105, 233-250. | 0.4 | 29        |
| 53 | In situviscosity measurements of albite melt under high pressure. Journal of Physics Condensed<br>Matter, 2002, 14, 11343-11347.                                                                                  | 0.7 | 27        |
| 54 | The compressibility of Fe- and Al-bearing phase D to 30ÂGPa. Physics and Chemistry of Minerals, 2007, 34,<br>159-167.                                                                                             | 0.3 | 27        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Density measurements of liquid Fe–Si alloys at high pressure using the sink–float method. Physics and<br>Chemistry of Minerals, 2011, 38, 801-807.                                                                          | 0.3 | 27        |
| 56 | High-temperature viscosity measurements of hydrous albite liquid using in-situ falling-sphere viscometry at 2.5 GPa. Chemical Geology, 2006, 229, 2-9.                                                                      | 1.4 | 25        |
| 57 | Flotation of Olivine in the Peridotite Melt at High Pressure Proceedings of the Japan Academy Series<br>B: Physical and Biological Sciences, 1993, 69, 23-28.                                                               | 1.6 | 24        |
| 58 | An in situ X ray diffraction study of the α-β transformation kinetics of Mg2SiO4. Geophysical Research<br>Letters, 1998, 25, 695-698.                                                                                       | 1.5 | 24        |
| 59 | Stability field of phase Egg, AlSiO <sub>3</sub> OH at high pressure and high temperature:<br>possible water reservoir in mantle transition zone. Journal of Mineralogical and Petrological<br>Sciences, 2017, 112, 31-35.  | 0.4 | 24        |
| 60 | The high-pressure and temperature equation of state of a majorite solid solution in the system of Mg 4<br>Si 4 O 12 -Mg 3 Al 2 Si 3 O 12. Physics and Chemistry of Minerals, 1999, 27, 3-10.                                | 0.3 | 23        |
| 61 | Thermal equation of state of Al―and Feâ€bearing phase D. Journal of Geophysical Research, 2008, 113, .                                                                                                                      | 3.3 | 23        |
| 62 | In situ measurement of interfacial tension of Fe–S and Fe–P liquids under high pressure using X-ray<br>radiography and tomography techniques. Physics of the Earth and Planetary Interiors, 2009, 174,<br>220-226.          | 0.7 | 23        |
| 63 | Space group and hydrogen sites of ?-AlOOH and implications for a hypothetical high-pressure form of Mg(OH)2. Physics and Chemistry of Minerals, 2004, 31, 360.                                                              | 0.3 | 22        |
| 64 | Compressional behavior and spin state of δ-(Al,Fe)OOH at high pressures. American Mineralogist, 2019,<br>104, 1273-1284.                                                                                                    | 0.9 | 22        |
| 65 | Neutron diffraction study of aluminous hydroxide δ-AlOOD. Physics and Chemistry of Minerals, 2007, 34, 657-661.                                                                                                             | 0.3 | 21        |
| 66 | Compressibility of the high-pressure polymorph of AlOOH to 17 GPa. Mineralogical Magazine, 2009, 73, 479-485.                                                                                                               | 0.6 | 20        |
| 67 | Flotation of olivine and diamond in mantle melt at high pressure: Implications for fractionation in the deep mantle and ultradeep origin of diamond. Geophysical Monograph Series, 1998, , 227-239.                         | 0.1 | 18        |
| 68 | Neutron diffraction study of hydrous phase G: Hydrogen in the lower mantle hydrous silicate, phase<br>G. Geophysical Research Letters, 2001, 28, 3987-3990.                                                                 | 1.5 | 18        |
| 69 | Single crystal synthesis of δ-(Al,Fe)OOH. American Mineralogist, 2017, 102, 1953-1956.                                                                                                                                      | 0.9 | 18        |
| 70 | Viscosity of liquid sulfur under high pressure. Journal of Physics Condensed Matter, 2004, 16, 1707-1714.                                                                                                                   | 0.7 | 17        |
| 71 | Superplasticity in hydrous melt-bearing dunite: Implications for shear localization in Earth's upper<br>mantle. Earth and Planetary Science Letters, 2012, 335-336, 59-71.                                                  | 1.8 | 17        |
| 72 | Speciation of and D/H partitioning between fluids and melts in silicate-D-O-H-C-N systems determined<br>in-situ at upper mantle temperatures, pressures, and redox conditions. American Mineralogist, 2014,<br>99, 578-588. | 0.9 | 17        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | In situ observation of crystallographic preferred orientation of deforming olivine at high pressure and high temperature. Physics of the Earth and Planetary Interiors, 2015, 243, 1-21.                          | 0.7 | 17        |
| 74 | Designing PLANET: Neutron beamline for high-pressure material science at J-PARC. Journal of Physics:<br>Conference Series, 2010, 215, 012025.                                                                     | 0.3 | 15        |
| 75 | P–V–T equation of state of Na-majorite to 21 GPa and 1673 K. Physics of the Earth and Planetary<br>Interiors, 2014, 227, 68-75.                                                                                   | 0.7 | 15        |
| 76 | Pressure–volume–temperature equation of state of ε–FeOOH to 11 GPa and 700 K. Journal of<br>Mineralogical and Petrological Sciences, 2016, 111, 420-424.                                                          | 0.4 | 15        |
| 77 | In situ observation and determination of liquid immiscibility in the Feâ€Oâ€S melt at 3 GPa using a synchrotron Xâ€ray radiographic technique. Geophysical Research Letters, 2007, 34, .                          | 1.5 | 14        |
| 78 | Rheology of fineâ€grained forsterite aggregate at deep upper mantle conditions. Journal of Geophysical<br>Research: Solid Earth, 2014, 119, 253-273.                                                              | 1.4 | 14        |
| 79 | Effect of sulfur on sound velocity of liquid iron under Martian core conditions. Nature<br>Communications, 2020, 11, 1954.                                                                                        | 5.8 | 13        |
| 80 | The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth's lower mantle. Scientific Reports,<br>2021, 11, 12036.                                                                                         | 1.6 | 12        |
| 81 | Thermoelastic properties of chromium oxide Cr2O3 (eskolaite) at high pressures and temperatures.<br>Physics and Chemistry of Minerals, 2016, 43, 447-458.                                                         | 0.3 | 11        |
| 82 | Viscosity and density measurements of melts and glasses at high pressure and temperature by using the multi-anvil apparatus and synchrotron X-ray radiation. , 2005, , 195-209.                                   |     | 10        |
| 83 | Thermal equation of state of majoritic knorringite and its significance for continental upper mantle.<br>Journal of Geophysical Research: Solid Earth, 2014, 119, 8034-8046.                                      | 1.4 | 10        |
| 84 | Structure and Density of H <sub>2</sub> Oâ€Rich Mg <sub>2</sub> SiO <sub>4</sub> Melts at High<br>Pressure From Ab Initio Simulations. Journal of Geophysical Research: Solid Earth, 2020, 125,<br>e2020JB020365. | 1.4 | 10        |
| 85 | Compression behavior of manganite. Journal of Mineralogical and Petrological Sciences, 2013, 108, 295-299.                                                                                                        | 0.4 | 9         |
| 86 | In situ X–ray diffraction studies of hydrous aluminosilicate at high pressure and temperature. Journal of Mineralogical and Petrological Sciences, 2018, 113, 106-111.                                            | 0.4 | 9         |
| 87 | Sound velocity measurements of ε–FeOOH up to 24 GPa. Journal of Mineralogical and Petrological<br>Sciences, 2019, 114, 155-160.                                                                                   | 0.4 | 9         |
| 88 | Hydrous magnesium-rich magma genesis at the top of the lower mantle. Scientific Reports, 2019, 9,<br>7420.                                                                                                        | 1.6 | 9         |
| 89 | Effects of alkali and alkaline-earth cations on the high-pressure sound velocities of aluminosilicate glasses. Physics and Chemistry of Minerals, 2020, 47, 1.                                                    | 0.3 | 8         |
| 90 | Deformation cubic anvil press and stress and strain measurements using monochromatic X-rays at<br>high pressure and high temperature. High Pressure Research, 2011, 31, 399-406.                                  | 0.4 | 7         |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Thermal equation of state of goethite (α-FeOOH). High Pressure Research, 2017, 37, 193-199.                                                                                                                                                   | 0.4 | 7         |
| 92  | Flow behavior and microstructures of hydrous olivine aggregates at upper mantle pressures and temperatures. Contributions To Mineralogy and Petrology, 2017, 172, 1.                                                                          | 1.2 | 7         |
| 93  | Effect of carbon dioxide on the viscosity of a melt of jadeite composition at high pressure. Journal of<br>Mineralogical and Petrological Sciences, 2018, 113, 47-50.                                                                         | 0.4 | 6         |
| 94  | On the origin of the Kamiokande experiment and neutrino astrophysics. European Physical Journal H, 2012, 37, 33-73.                                                                                                                           | 0.5 | 5         |
| 95  | Pressure–induced structural changes of basaltic glass. Journal of Mineralogical and Petrological Sciences, 2018, 113, 286-292.                                                                                                                | 0.4 | 5         |
| 96  | Elastic properties and structures of pyrope glass under high pressures. American Mineralogist, 2021, 106, 7-14.                                                                                                                               | 0.9 | 5         |
| 97  | The 20th anniversary of SN1987A. Journal of Physics: Conference Series, 2008, 120, 072001.                                                                                                                                                    | 0.3 | 4         |
| 98  | Corrigendum to "Effect of water in depleted mantle on post-spinel transition and implication for 660<br>km seismic discontinuity―[Earth Planet. Sci. Lett. 371–372 (2013) 103–111]. Earth and Planetary Science<br>Letters, 2013, 382, 85-86. | 1.8 | 4         |
| 99  | Application of X-ray radiography to study the segregation process of iron from silicate under high pressure and high temperature. High Pressure Research, 2015, 35, 130-138.                                                                  | 0.4 | 4         |
| 100 | <i>P–V–T</i> equation of state of rhodium oxyhydroxide. High Pressure Research, 2018, 38, 145-152.                                                                                                                                            | 0.4 | 4         |
| 101 | The sound velocity of wüstite at high pressures: implications for low-velocity anomalies at the base of the lower mantle. Progress in Earth and Planetary Science, 2020, 7, .                                                                 | 1.1 | 4         |
| 102 | In Situ X Ray Observation of the Phase Transitions from .ALPHA. to .GAMMA. and from .GAMMA. to<br>Perovskite+Periclase in Mg2SiO4 Review of High Pressure Science and Technology/Koatsuryoku No<br>Kagaku To Gijutsu, 1998, 7, 119-121.       | 0.1 | 4         |
| 103 | Phase relationships of the system Fe-Ni-S and structure of the high-pressure phase of (Fe1â^'xNix)3S2.<br>Physics of the Earth and Planetary Interiors, 2018, 277, 30-37.                                                                     | 0.7 | 3         |
| 104 | The stability of anhydrous phase B, Mg14Si5O24, at mantle transition zone conditions. Physics and Chemistry of Minerals, 2018, 45, 523-531.                                                                                                   | 0.3 | 3         |
| 105 | Do SnI <sub>4</sub> molecules deform on heating and pressurization in the low-pressure crystalline phase?. Journal of Physics Condensed Matter, 2020, 32, 055401.                                                                             | 0.7 | 3         |
| 106 | In situ observation of the pyroxene-majorite transition in Na2MgSi5O12 using synchrotron radiation and Raman spectroscopy of Na-majorite. American Mineralogist, 2015, 100, 378-384.                                                          | 0.9 | 2         |
| 107 | In-situ X-ray diffraction study on β-CrOOH at high pressure and high-temperature. High Pressure<br>Research, 2019, 39, 499-508.                                                                                                               | 0.4 | 2         |
| 108 | Structure of basaltic glass at pressures up to 18 GPa. American Mineralogist, 2022, 107, 325-335.                                                                                                                                             | 0.9 | 2         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Phase transitions of ScOOH under high pressure. High Pressure Research, 2021, 41, 275-289.                                                                                             | 0.4 | 2         |
| 110 | High Pressure Earth Science. Physical Properties of Silicate Melt at High Pressure Review of High<br>Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1999, 9, 11-18. | 0.1 | 2         |
| 111 | Creep behavior during the eutectoid transformation of albite: Implications for the slab deformation in the lower mantle. Earth and Planetary Science Letters, 2014, 388, 92-97.        | 1.8 | 1         |

112 āfžāf«āfā,¢āf³āf"āf«ā,'ç""ā,āŸé«~æ,©é«~圧実é"" —最èį'ã®æ^œžœâ€". Ganseki Kobutsu Kagaku, 2001, 301, 102-103.

| 113 | Micro-Raman spectroscopy of small crystals Ganseki Kobutsu Kagaku, 2001, 30, 241-246.                                                                                                         | 0.1 | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 114 | Density and Viscosity of Magma and Metallic Liquid at High Pressures and Temperatures. Review of<br>High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2005, 15, 146-155. | 0.1 | 1 |
| 115 | Viscosity of melt of soda melilite composition at high pressure. Journal of Mineralogical and Petrological Sciences, 2019, 114, 41-44.                                                        | 0.4 | 1 |
| 116 | High Pressure Experiments and the Study of the Earth's Interior. Review of High Pressure Science and<br>Technology/Koatsuryoku No Kagaku To Gijutsu, 2007, 17, 198-205.                       | 0.1 | 0 |
| 117 | Preface for the article collection "High-Pressure Earth and Planetary Science in the last and next<br>decade― Progress in Earth and Planetary Science, 2016, 3, .                             | 1.1 | 0 |
| 118 | A unique multianvil 6–6 assembly for a cubic-type multianvil apparatus. Review of Scientific<br>Instruments, 2021, 92, 025117.                                                                | 0.6 | 0 |
| 119 | Viscosity of K <sub>2</sub> TiSi <sub>4</sub> O <sub>11</sub> melt at high pressure. Journal of Mineralogical and Petrological Sciences, 2019, 114, 280-283.                                  | 0.4 | 0 |
| 120 | Localized Deformation of Lawsonite During Cold Subduction. Journal of Geophysical Research: Solid<br>Earth, 2022, 127, .                                                                      | 1.4 | 0 |
| 121 | In situ X–ray diffraction study of the phase boundary between diaspore and δ–AlOOH. Journal of<br>Mineralogical and Petrological Sciences, 2022, 117, n/a.                                    | 0.4 | 0 |
| 122 | <i>P</i> - <i>V</i> - <i>T</i> equation of state of α-ScOOH High Pressure Research, 0, , 1-13.                                                                                                | 0.4 | 0 |