Steve C Fordahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790621/publications.pdf

Version: 2024-02-01

all docs

758635 794141 20 636 12 19 citations h-index g-index papers 20 20 20 1124 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Reduced phasic dopamine release and slowed dopamine uptake occur in the nucleus accumbens after a diet high in saturated but not unsaturated fat. Nutritional Neuroscience, 2022, 25, 33-45.	1.5	11
2	Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutrition Research Reviews, 2022, 35, 236-251.	2.1	19
3	Bingeing on Highâ€Fat Food Enhances Evoked Dopamine Release and Reduces Dopamine Uptake in the Nucleus Accumbens. Obesity, 2021, 29, 721-730.	1.5	10
4	Replacing a Palatable High-Fat Diet with a Low-Fat Alternative Heightens \hat{I}^2 -Opioid Receptor Control over Nucleus Accumbens Dopamine. Nutrients, 2021, 13, 2341.	1.7	2
5	The impact of a high-fat diet on physical activity and dopamine neurochemistry in the striatum is sex and strain dependent in C57BL/6J and DBA/2J mice. Nutritional Neuroscience, 2021, , 1-15.	1.5	4
6	Organic cation transporter 3 and the dopamine transporter differentially regulate catecholamine uptake in the basolateral amygdala and nucleus accumbens. European Journal of Neuroscience, 2020, 52, 4546-4562.	1.2	23
7	Effect of fasting on dopamine neurotransmission in subregions of the nucleus accumbens in male and female mice. Nutritional Neuroscience, 2020, , 1-12.	1.5	3
8	Modulation of striatal dopamine dynamics by cocaine selfâ€administration and amphetamine treatment in female rats. European Journal of Neuroscience, 2019, 50, 2740-2749.	1.2	10
9	Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. Journal of Neuroscience, 2018, 38, 484-497.	1.7	53
10	High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling. ACS Chemical Neuroscience, 2017, 8, 290-299.	1.7	54
11	Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine. Journal of Neuroscience, 2016, 36, 7807-7816.	1.7	28
12	High fat diet augments amphetamine sensitization in mice: Role of feeding pattern, obesity, and dopamine terminal changes. Neuropharmacology, 2016, 109, 170-182.	2.0	33
13	Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology, 2016, 101, 471-479.	2.0	83
14	Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution. Diabetes, 2014, 63, 421-432.	0.3	131
15	Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased Î3-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate. Environmental Toxicology and Pharmacology, 2014, 37, 1148-1156.	2.0	9
16	Waterborne manganese exposure alters plasma, brain, and liver metabolites accompanied by changes in stereotypic behaviors. Neurotoxicology and Teratology, 2012, 34, 27-36.	1.2	37
17	The Neurochemical Alterations Associated with Manganese Toxicity. , 2012, , 549-567.		1
18	Manganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats. NeuroToxicology, 2010, 31, 639-646.	1.4	32

#	Article	IF	CITATIONS
19	Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure. Brain Research, 2009, 1281, 1-14.	1.1	39
20	Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. NeuroToxicology, 2008, 29, 1044-1053.	1.4	54