Benoit Allard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790583/publications.pdf

Version: 2024-02-01

567281 752698 25 789 15 20 citations h-index g-index papers 25 25 25 1345 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asthmatic bronchial smooth muscle increases rhinovirus replication within the bronchial epithelium. Cell Reports, 2022, 38, 110571.	6.4	11
2	$TGF\hat{I}^2$ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis. Annals of the Rheumatic Diseases, 2021, 80, 1594-1603.	0.9	30
3	Differential Regulation of the Asthmatic Phenotype by the Aryl Hydrocarbon Receptor. Frontiers in Physiology, 2021, 12, 720196.	2.8	3
4	Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury. Journal of Allergy and Clinical Immunology, 2019, 144, 945-961.e9.	2.9	11
5	Pulmonary neutrophilia caused by absence of the NF-κB member RelB is dampened by exposure to cigarette smoke. Molecular Immunology, 2019, 114, 395-409.	2.2	4
6	Asthmatic Bronchial Smooth Muscle Increases CCL5-Dependent Monocyte Migration in Response to Rhinovirus-Infected Epithelium. Frontiers in Immunology, 2019, 10, 2998.	4.8	11
7	Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in Immunology, 2018, 9, 1777.	4.8	240
8	Adaptation to oxidative stress induced-lung injury: friend or foe of influenza infection?. , 2018, , .		1
9	Montelukast reduces inhaled chlorine triggered airway hyperresponsiveness and airway inflammation in the mouse. British Journal of Pharmacology, 2017, 174, 3346-3358.	5.4	19
10	Automated full-range pressure-volume curves in mice and rats. Journal of Applied Physiology, 2017, 123, 746-756.	2.5	37
11	Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice. Free Radical Biology and Medicine, 2017, 102, 1-15.	2.9	17
12	RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to Influenza A virus infection. PLoS Pathogens, 2017, 13, e1006326.	4.7	60
13	Novel protective role of alveolar macrophages in adaptation to lung injury. , 2017, , .		0
14	CysLT1 Receptor Is Protective against Oxidative Stress in a Model of Irritant-Induced Asthma. Journal of Immunology, 2016, 197, 266-277.	0.8	20
15	Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L155-L165.	2.9	26
16	Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. Journal of Allergy and Clinical Immunology, 2016, 137, 1036-1042.e7.	2.9	51
17	Selective dysfunction of p53 for mitochondrial biogenesis induces cellular proliferation in bronchial smooth muscle from asthmatic patients. Journal of Allergy and Clinical Immunology, 2016, 137, 1717-1726.e13.	2.9	22
18	Bronchial Smooth Muscle Remodeling in Nonsevere Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 627-633.	5.6	45

#	Article	IF	CITATIONS
19	House Dust Mites Induce Proliferation of Severe Asthmatic Smooth Muscle Cells via an Epithelium-Dependent Pathway. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 538-546.	5.6	54
20	Neutrophils Mediate Airway Hyperresponsiveness after Chlorine-Induced Airway Injury in the Mouse. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 513-522.	2.9	43
21	Recruitment of blood fibrocytes during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4 dependent pathway. , 2015, , .		1
22	The critical role of bronchial smooth muscle remodeling in non-severe asthma., 2015,,.		0
23	p53 dysfunction increased mitochondrial biogenesis and bronchial smooth muscle cell proliferation in asthma. , 2015, , .		0
24	Protease Activated Receptor-2 Expression and Function in Asthmatic Bronchial Smooth Muscle. PLoS ONE, 2014, 9, e86945.	2.5	20
25	The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology. Journal of Allergy, 2011, 2011, 1-20.	0.7	63