
Oleksandr N Minchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5790551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-titanium nitride causes developmental toxicity in zebrafish through oxidative stress. Drug and Chemical Toxicology, 2022, 45, 1660-1669.	2.3	7

The impact of single walled carbon nanotubes on the expression of microRNA in zebrafish (Danio) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $_{1.3}^{2}$

3	Exposure to nanographene oxide induces gene expression dysregulation in normal human astrocytes. Endocrine Regulations, 2022, 56, 216-226.	1.3	1
4	The low doses of SWCNTs affect the expression of proliferation and apoptosis related genes in normal human astrocytes. Current Research in Toxicology, 2021, 2, 64-71.	2.7	11
5	ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocrine Regulations, 2021, 55, 72-82.	1.3	4
6	Inhibition of ERN1 Signaling is Important for the Suppression of Tumor Growth. Clinical Cancer Drugs, 2021, 8, 27-38.	0.3	3
7	Expression of <i>IDE</i> and <i>PITRM1</i> genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocrine Regulations, 2020, 54, 183-195.	1.3	11
8	ERN1 knockdown modifies the effect of glucose deprivation on homeobox gene expressions in U87 glioma cells. Endocrine Regulations, 2020, 54, 196-206.	1.3	3
9	Silencing of NAMPT leads to up-regulation of insulin receptor substrate 1 gene expression in U87 glioma cells. Endocrine Regulations, 2020, 54, 31-42.	1.3	4
10	Insulin receptor substrate 1 gene expression is strongly up-regulated by HSPB8 silencing in U87 glioma cells. Endocrine Regulations, 2020, 54, 231-243.	1.3	1
11	Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocrine Regulations, 2019, 53, 250-262.	1.3	21
12	Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocrine Regulations, 2019, 53, 34-45.	1.3	14
13	Effect of glucose deprivation on the expression of genes encoding glucocorticoid receptor and some related factors in ERN1-knockdown U87 glioma cells. Endocrine Regulations, 2019, 53, 237-249.	1.3	13
14	Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicology in Vitro, 2018, 52, 122-130.	2.4	19
15	Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition. Endocrine Regulations, 2017, 51, 8-19.	1.3	13
16	Effect of Hypoxia on the Expression of a Subset of Proliferation Related Genes in IRE1 Knockdown U87 Glioma Cells. Advances in Biological Chemistry, 2017, 07, 195-210.	0.6	6
17	IRE-1α regulates expression of ubiquitin specific peptidases during hypoxic response in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2016, 3, .	0.2	2
18	Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells. Endocrine Regulations, 2016, 50, 127-136.	1.3	12

#	Article	IF	CITATIONS
19	Singleâ€walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 180-188.	0.9	5
20	Inhibition of IRE1 signaling affects expression of a subset genes encoding for TNF-related factors and receptors and modifies their hypoxic regulation in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2016, 3, .	0.2	8
21	Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	27
22	Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocrine Regulations, 2015, 49, 73-83.	1.3	27
23	IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells. Endocrine Regulations, 2015, 49, 185-197.	1.3	16
24	IRE-1alpha Signaling as a Key Target for Suppression of Tumor Growth. Single Cell Biology, 2015, 04, .	0.2	5
25	Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasmic Reticulum Stress in Diseases, 2014, 1, .	0.2	21
26	Molecular Mechanisms of ERN1-Mediated Angiogenesis. International Journal of Physiology and Pathophysiology, 2014, 5, 1-22.	0.1	10
27	Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World Journal of Gastroenterology, 2014, 20, 13705.	3.3	58
28	Endoplasmic Reticulum Stress and Angiogenesis in Cancer. International Journal of Physiology and Pathophysiology, 2014, 5, 261-281.	0.1	2
29	High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer, 2013, 13, 597.	2.6	81
30	Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 156-160.	0.9	6
31	Effect of C ₆₀ Fullerene on the expression of ERN1 signaling related genes in human astrocytes. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 150-155.	0.9	2
32	Insulin receptor, IRS1, IRS2, INSIG1, INSIG2, RRAD, and BAIAP2 gene expressions in glioma U87 cells with ERN1 loss of function: effect of hypoxia and glutamine or glucose deprivation. Endocrine Regulations, 2013, 47, 15-26.	1.3	21
33	The Expression of <i>TIMP</i> 1, <i>TIMP</i> 2, <i>VCAN</i> , <i>SPARC</i> , <i>CLEC</i> 3 <i>B</i> and <i>E</i> 2 <i>F</i> 1 in Subcutaneous Adipose Tissue of Obese Males and Glucose Intolerance, CellBio, 2013, 02, 45-53.	1.3	7
34	Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. American Journal of Molecular Biology, 2012, 02, 21-31.	0.3	6
35	The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function. Advances in Biological Chemistry, 2012, 02, 198-206.	0.6	8
36	Expression of casein kinase genes in glioma cell line U87: Effect of hypoxia and glucose or glutamine deprivation. Natural Science, 2012, 04, 38-46.	0.4	2

#	Article	IF	CITATIONS
37	Expression of SNF1/AMPâ€activated protein kinase and casein kinaseâ€1ε in different rat tissues are sensitive markers of in vivo silver nanoparticles action. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 118-122.	0.9	4
38	6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA expression in streptozotocin-diabetic rats. Biopolymers and Cell, 2008, 24, 260-266.	0.4	1
39	Oxidized Phospholipids Stimulate Angiogenesis Via Autocrine Mechanisms, Implicating a Novel Role for Lipid Oxidation in the Evolution of Atherosclerotic Lesions. Circulation Research, 2006, 99, 900-908.	4.5	134
40	Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers Acta Biochimica Polonica, 2006, 53, 789-799.	0.5	62
41	Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochimica Polonica, 2006, 53, 789-99.	0.5	29
42	Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation. Molecular and Cellular Biochemistry, 2005, 280, 227-234.	3.1	24
43	Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005, 87, 1005-1010.	2.6	79
44	Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines Acta Biochimica Polonica, 2005, 52, 881-888.	0.5	25
45	Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines. Acta Biochimica Polonica, 2005, 52, 881-8.	0.5	11
46	Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1α activation. FEBS Letters, 2004, 576, 14-20.	2.8	101
47	Hypoxic regulation of the 6â€phosphofructoâ€2â€kinase/fructoseâ€2,6â€bisphosphatase gene family (PFKFBâ€ expression in vivo. FEBS Letters, 2003, 554, 264-270.	l–4) 2.8	194
48	Aldose Reductase Inhibitor Fidarestat Prevents Retinal Oxidative Stress and Vascular Endothelial Growth Factor Overexpression in Streptozotocin-Diabetic Rats. Diabetes, 2003, 52, 864-871.	0.6	197
49	Hypoxia-inducible Factor-1-mediated Expression of the 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) Gene. Journal of Biological Chemistry, 2002, 277, 6183-6187.	3.4	310
50	Heme Oxygenase-1 mRNA Expression in the Lung during Murine Traumatic Shock: Effect of rsPSGL.1g. Anesthesiology, 2002, 96, A420.	2.5	0
51	Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia, 2001, 44, 1102-1110.	6.3	168
52	Oxygen Sensing and HIF-1 Activation Does Not Require an Active Mitochondrial Respiratory Chain Electron-transfer Pathway. Journal of Biological Chemistry, 2001, 276, 21995-21998.	3.4	132
53	Essential Role of P-Selectin in the Initiation of the Inflammatory Response Induced by Hemorrhage and Reinfusion. Journal of Experimental Medicine, 1999, 189, 931-938.	8.5	71
54	Trends of plasma corticosterone levels in rabbits after experimental concussion. Bulletin of Experimental Biology and Medicine, 1991, 111, 30-32.	0.8	0

#	Article	IF	CITATIONS
55	Characteristics of poly(A)-containing RNA from liver mitochondria of normal and adrenalectomized rats. Neuroscience and Behavioral Physiology, 1986, 16, 291-295.	0.4	Ο
56	Discrete poly(A)-RNA species from rat liver mitochondria are fragments of 16S mitochondrial rRNA carrying its 5′-termini. Molecular Biology Reports, 1983, 9, 155-161.	2.3	4
57	Transcriptional mapping of the rat liver mitochondrial genome. Gene, 1983, 24, 115-124.	2.2	4
58	Hormonal control of the expression of a portion of the mitochondrial genome in animal cells. Neuroscience and Behavioral Physiology, 1982, 12, 514-518.	0.4	0
59	Effect of repeated injections of hydrocortisone and sodium ribonucleate on mitochondrial RNA content in albino rat organs. Bulletin of Experimental Biology and Medicine, 1972, 73, 153-154.	0.8	1