
Yutian Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5789803/publications.pdf Version: 2024-02-01

ΥΠΤΙΛΝ ΖΗΠ

#	Article	IF	CITATIONS
1	Highly flexible TPU/SWCNTs composite-based temperature sensors with linear negative temperature coefficient effect and photo-thermal effect. Composites Science and Technology, 2022, 217, 109133.	3.8	23
2	Flexible and breathable all-nanofiber iontronic pressure sensors with ultraviolet shielding and antibacterial performances for wearable electronics. Nano Energy, 2022, 95, 107022.	8.2	67
3	Light-driven sequential shape transformation of block copolymer particles through three-dimensional confined self-assembly. Nanoscale, 2022, 14, 6291-6298.	2.8	9
4	Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy, 2022, 96, 107077.	8.2	95
5	Flexible and Transparent Pressure/Temperature Sensors Based on Ionogels with Bioinspired Interlocked Microstructures. ACS Applied Materials & Interfaces, 2022, 14, 2122-2131.	4.0	46
6	Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor. Carbon, 2022, 195, 364-371.	5.4	33
7	Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain. ACS Applied Materials & Interfaces, 2022, 14, 30268-30278.	4.0	39
8	Temperature-Driven Reversible Shape Transformation of Polymeric Nanoparticles from Emulsion Confined Coassembly of Block Copolymers and Poly(<i>N</i> -isopropylacrylamide). Macromolecules, 2022, 55, 6211-6219.	2.2	10
9	Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polymer Reviews, 2021, 61, 157-193.	5.3	103
10	Movable-crosslinking tough hydrogels with lithium ion as sensitive and durable compressive sensor. Polymer, 2021, 214, 123257.	1.8	6
11	A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. Journal of Materials Chemistry A, 2021, 9, 1795-1802.	5.2	92
12	Encapsulation of inorganic nanoparticles in a block copolymer vesicle wall driven by the interfacial instability of emulsion droplets. Polymer Chemistry, 2021, 12, 4184-4192.	1.9	10
13	Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Advanced Composites and Hybrid Materials, 2021, 4, 574-583.	9.9	86
14	Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles. Applied Surface Science, 2021, 548, 149268.	3.1	72
15	Synthesis, self-assembly and thermoresponsive behavior of Poly(lactide-co-glycolide)-b-Poly(ethylene) Tj ETQq1	1 0.78431 1.8431	4 rgBT /Over
16	Light-Enabled Reversible Shape Transformation of Block Copolymer Particles. ACS Macro Letters, 2021, 10, 914-920.	2.3	33
17	Recent Progress in Essential Functions of Soft Electronic Skin. Advanced Functional Materials, 2021, 31, 2104686.	7.8	192
18	Advances in transparent and stretchable strain sensors. Advanced Composites and Hybrid Materials, 2021, 4, 435-450.	9.9	109

Yutian Zhu

#	Article	IF	CITATIONS
19	Design of flexible strain sensor with both ultralow detection limit and wide sensing range via the multiple sensing mechanisms. Composites Science and Technology, 2021, 213, 108932.	3.8	40
20	Stretchable strain and temperature sensor based on fibrous polyurethane film saturated with ionic liquid. Composites Communications, 2021, 27, 100845.	3.3	34
21	Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chemical Engineering Journal, 2021, 424, 130418.	6.6	119
22	Breathable Strain/Temperature Sensor Based on Fibrous Networks of Ionogels Capable of Monitoring Human Motion, Respiration, and Proximity. ACS Applied Materials & Interfaces, 2021, 13, 51567-51577.	4.0	77
23	Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chemical Engineering Journal, 2020, 382, 122823.	6.6	60
24	A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Composites Science and Technology, 2020, 186, 107938.	3.8	166
25	Switchable Isotropic/Anisotropic Wettability and Programmable Droplet Transportation on a Shape-Memory Honeycomb. ACS Applied Materials & Interfaces, 2020, 12, 42314-42320.	4.0	17
26	Simultaneously strengthening, toughening, and conductivity improving for epoxy at ultralow carbonaceous filler content by constructing 3D nanostructures and sacrificial bonds. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106014.	3.8	15
27	Recent Progress on Thermo-electrical Properties of Conductive Polymer Composites and Their Application in Temperature Sensors. Engineered Science, 2020, , .	1.2	57
28	An overview of stretchable strain sensors from conductive polymer nanocomposites. Journal of Materials Chemistry C, 2019, 7, 11710-11730.	2.7	315
29	Well-Ordered Inorganic Nanoparticle Arrays Directed by Block Copolymer Nanosheets. ACS Nano, 2019, 13, 6638-6646.	7.3	96
30	Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 15731-15740.	5.2	41
31	Disassembly of Multicompartment Polymer Micelles in Spatial Sequence Using an Electrostatic Field and Its Application for Release in Chronological Order. Angewandte Chemie - International Edition, 2018, 57, 3578-3582.	7.2	31
32	Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement. Soft Matter, 2018, 14, 4679-4686.	1.2	17
33	Tune the phase morphology to design conductive polymer composites: A review. Polymer Composites, 2018, 39, 2985-2996.	2.3	52
34	Frontispiz: Disassembly of Multicompartment Polymer Micelles in Spatial Sequence Using an Electrostatic Field and Its Application for Release in Chronological Order. Angewandte Chemie, 2018, 130, .	1.6	0
35	Frontispiece: Disassembly of Multicompartment Polymer Micelles in Spatial Sequence Using an Electrostatic Field and Its Application for Release in Chronological Order. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
36	Disassembly of Multicompartment Polymer Micelles in Spatial Sequence Using an Electrostatic Field and Its Application for Release in Chronological Order. Angewandte Chemie, 2018, 130, 3640-3644.	1.6	1

Υυτιαν Ζηυ

#	Article	IF	CITATIONS
37	Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chemical Communications, 2018, 54, 13183-13195.	2.2	97
38	Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Composites Science and Technology, 2018, 168, 388-396.	3.8	89
39	Thermal annealing induced enhancement of electrical properties of a co-continuous polymer blend filled with carbon nanotubes. Composites Science and Technology, 2018, 167, 522-528.	3.8	29
40	Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. Journal of Materials Chemistry C, 2018, 6, 9354-9362.	2.7	52
41	Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon, 2017, 114, 441-448.	5.4	179
42	Synthesis and Characterization of PEGylated Trityl Radicals: Effect of PEGylation on Physicochemical Properties. Journal of Organic Chemistry, 2017, 82, 588-596.	1.7	25
43	Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Composites Science and Technology, 2017, 140, 99-105.	3.8	121
44	Controllable Location of Inorganic Nanoparticles on Block Copolymer Self-Assembled Scaffolds by Tailoring the Entropy and Enthalpy Contributions. Macromolecules, 2017, 50, 6771-6778.	2.2	61
45	Inorganic Nanoparticle Induced Morphological Transition for Confined Self-Assembly of Block Copolymers within Emulsion Droplets. Journal of Physical Chemistry B, 2017, 121, 8417-8425.	1.2	31
46	Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles. Nanoscale, 2017, 9, 15056-15061.	2.8	33
47	Stepwise study on Janus-like particles fabricated by polymeric mixtures within soft droplets: a Monte Carlo simulation. RSC Advances, 2017, 7, 38666-38676.	1.7	6
48	Self-assembly of AB diblock copolymer solutions confined in cylindrical nanopores. Materials Chemistry Frontiers, 2017, 1, 487-494.	3.2	7
49	Fabrication of Polymer Film with Extraordinary Conductive Anisotropy by Forming Parallel Conductive Vorticityâ€Aligned Stripes and Its Formation Mechanism. Macromolecular Materials and Engineering, 2016, 301, 743-749.	1.7	26
50	Self-Assembly of AB Diblock Copolymer Confined in a Soft Nano-Droplet: A Combination Study by Monte Carlo Simulation and Experiment. Journal of Physical Chemistry B, 2016, 120, 12023-12029.	1.2	35
51	Release Behavior of Polymeric Vesicles in Solution Controlled by External Electrostatic Field. ACS Macro Letters, 2016, 5, 1212-1216.	2.3	17
52	Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend. Composites Science and Technology, 2016, 129, 160-165.	3.8	118
53	Controllable Cooperative Self-Assembly of PS- <i>b</i> -PAA/PS- <i>b</i> -P4VP Mixture by Tuning the Intercorona Interaction. Journal of Physical Chemistry B, 2016, 120, 5527-5533.	1.2	17
54	Self-assembly of ABC triblock copolymers under 3D soft confinement: a Monte Carlo study. Soft Matter, 2016, 12, 965-972.	1.2	20

Υυτιάν Ζηυ

#	Article	IF	CITATIONS
55	Templated Self-Assembly of Block Copolymers and Morphology Transformation Driven by the Rayleigh Instability. Langmuir, 2015, 31, 1660-1669.	1.6	35
56	Highly trans-1,4-stereoselective coordination chain transfer polymerization of 1,3-butadiene and copolymerization with cyclic esters by a neodymium-based catalyst system. Polymer Chemistry, 2015, 6, 6088-6095.	1.9	27
57	Self-assembly of ABA triblock copolymers under soft confinement. Chemical Physics, 2015, 452, 46-52.	0.9	19
58	Entropy-Driven Hierarchical Nanostructures from Cooperative Self-Assembly of Gold Nanoparticles/Block Copolymers under Three-Dimensional Confinement. Macromolecules, 2015, 48, 5980-5987.	2.2	76
59	Parallel carbon nanotube stripes in polymer thin film with tunable microstructures and anisotropic conductive properties. Composites Part A: Applied Science and Manufacturing, 2015, 69, 240-246.	3.8	35
60	Multicompartment nanoparticles from the self-assembly of mixtures of ABC and AC block copolymers in C-selective solvents. Chemical Physics, 2014, 441, 47-52.	0.9	9
61	Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon, 2014, 73, 267-274.	5.4	225
62	Parallel Carbon Nanotube Stripes in Polymer Thin Film with Remarkable Conductive Anisotropy. ACS Applied Materials & Interfaces, 2014, 6, 1754-1758.	4.0	66
63	Tailored Parallel Graphene Stripes in Plastic Film with Conductive Anisotropy by Shear-Induced Self-Assembly. Journal of Physical Chemistry Letters, 2013, 4, 43-47.	2.1	66
64	Ultralong gold nanoparticle/block copolymer hybrid cylindrical micelles: a strategy combining surface templated self-assembly and Rayleigh instability. Nanoscale, 2013, 5, 6344.	2.8	38
65	Janus-like spheres, disks, rings, cylinders, and vesicles from the self-assembly of mixture of AB and BC diblock copolymers in A- and C-selective solvents. Soft Matter, 2013, 9, 6254.	1.2	27
66	Segmented and double-helix multicompartment micelles from self-assembly of blends of ABC and AB block copolymers in C block-selective solvents. Soft Matter, 2012, 8, 11156.	1.2	19
67	Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: a Monte Carlo simulation. Soft Matter, 2012, 8, 4695.	1.2	24
68	Highly Symmetric Patchy Multicompartment Nanoparticles from the Self-Assembly of ABC Linear Terpolymers in C-Selective Solvents. Langmuir, 2012, 28, 11714-11724.	1.6	33
69	Meshâ€Like Vesicles Formed From Blends of Poly(4â€vinyl pyridine)â€ <i>b</i> â€polystyreneâ€ <i>b</i> â€poly(4a€vinyl pyridine)â€ <i>2012, 213, 2261-2266.</i>	â€vinyl) Tj 1.1	ETQq1 1 0.7 11
70	Design of Electrical Conductive Composites: Tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends. ACS Applied Materials & Interfaces, 2012, 4, 5281-5286.	4.0	207
71	Droplet-cluster transition in sheared polyamide 6–poly(styrene-ethylene-butadiene-styrene)– polypropylene ternary blends. Physical Review E, 2010, 82, 031807.	0.8	13
72	Rheological properties of PDMS/clay nanocomposites and their sensitivity to microstructure. Rheologica Acta, 2009, 48, 1049-1058.	1.1	31

Yutian Zhu

#	Article	IF	CITATIONS
73	Morphological transition of dry vesicles into onion-like multilamellar micelles induced through heating at high temperature. Chemical Physics Letters, 2008, 460, 257-260.	1.2	6
74	Self-Assembly of Diblock Copolymer Mixtures in Confined States:Â A Monte Carlo Study. Macromolecules, 2007, 40, 2872-2881.	2.2	48
75	Online study of the formation of PA6 droplets in PP matrix under shear flow. Journal of Applied Polymer Science, 2007, 104, 2690-2695.	1.3	6
76	Monte Carlo simulation of the compatibility of graft copolymer compatibilized two incompatible homopolymer blends: Effect of graft structure. Journal of Applied Polymer Science, 2007, 105, 1591-1596.	1.3	16
77	Nano-reactors for controlling the selectivity of the free radical grafting of maleic anhydride onto polypropylene in the melt. Polymer Engineering and Science, 2006, 46, 1443-1454.	1.5	29
78	A Monte Carlo simulation for the micellization of ABC 3-miktoarm star terpolymers in a selective solvent. Chemical Physics, 2006, 327, 137-143.	0.9	27
79	Effect of the initial maleic anhydride content on the grafting of maleic anhydride onto isotactic polypropylene. Journal of Polymer Science Part A, 2005, 43, 5529-5534.	2.5	32
80	Monte Carlo Simulation of the Grafting of Maleic Anhydride onto Polypropylene at Higher Temperature. Macromolecules, 2003, 36, 3714-3720.	2.2	50