
Andrey P Kokhanenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5789486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-photon avalanche diode detectors based on group IV materials. Applied Nanoscience (Switzerland), 2022, 12, 253-263.	3.1	13
2	High-resolution RHEED analysis of dynamics of low-temperature superstructure transitions in Ge/Si(001) epitaxial system. Nanotechnology, 2022, 33, 115603.	2.6	5
3	Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis. Nanomaterials, 2022, 12, 2221.	4.1	15
4	Interaction between islands in kinetic models of epitaxial growth of quantum dots. Applied Nanoscience (Switzerland), 2020, 10, 2527-2533.	3.1	6
5	Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes. Surface and Coatings Technology, 2020, 384, 125289.	4.8	52
6	Thickness-dependent surface energy and formation of epitaxial quantum dots. Thin Solid Films, 2020, 713, 138363.	1.8	7
7	Thickness-dependent elastic strain in Stranski–Krastanow growth. Physical Chemistry Chemical Physics, 2020, 22, 19318-19325.	2.8	9
8	Molecular dynamics simulations of the growth of Ge on Si. Surface Science, 2020, 696, 121594.	1.9	10
9	Epitaxial fabrication of 2D materials of group IV elements. Applied Nanoscience (Switzerland), 2020, 10, 4375-4383.	3.1	15
10	Evolution of Epitaxial Quantum Dots Formed by Volmer–Weber Growth Mechanism. Crystal Growth and Design, 2019, 19, 7015-7021.	3.0	11
11	Comparative analysis of germanium–silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces. Nanotechnology, 2018, 29, 054002.	2.6	16
12	Critical thickness of transition from 2D to 3D growth and peculiarities of quantum dots formation in Ge Si1-/Sn/Si and Ge1-ySny/Si systems. Surface Science, 2018, 669, 45-49.	1.9	13
13	Influence of Direct Impingement of Atoms Onto the Islands During the Stranski-Krastanow Growth. , 2018, , .		0
14	Investigation of Ge/Si quantum dot structures using the methods of admittance spectroscopy. International Journal of Nanotechnology, 2015, 12, 285.	0.2	0
15	Photodetectors and solar cells with Ge/Si quantum dots parameters dependence on growth conditions. International Journal of Nanotechnology, 2015, 12, 209.	0.2	2
16	Influence of Edge Energy on Modeling the Growth Kinetics of Quantum Dots. Crystal Growth and Design, 2015, 15, 1055-1059.	3.0	14
17	Generalized Muller–Kern formula for equilibrium thickness of a wetting layer with respect to the dependence of the surface energy of island facets on the thickness of the 2D layer. Physical Chemistry Chemical Physics, 2015, 17, 30052-30056.	2.8	17
18	USE OF THE COMPETENCY AND MODULAR APPROACHES TO THE ORGANIZATION OF THE LABORATORY WORKSHOP FOR STUDENTS OF DIFFERENT LEVELS OF TRAINING. Vestnik Tomskogo Gosudarstvennogo Universiteta, 2015, , 220-224.	0.1	0

#	Article	IF	CITATIONS
19	Comparative analysis of pyramidal and wedge-like quantum dots formation kinetics in Ge/Si(001) system. Surface Science, 2014, 619, 1-4.	1.9	13