Dong Won Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5789457/publications.pdf

Version: 2024-02-01

18	947	14	18
papers	citations	h-index	g-index
18	18	18	1298
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	One-pot fructose conversion into 5-ethoxymethylfurfural using a sulfonated hydrophobic mesoporous organic polymer as a highly active and stable heterogeneous catalyst. Catalysis Science and Technology, 2021, 11, 5816-5826.	4.1	7
2	Comparative sustainability assessment of a hydrogen supply network for hydrogen refueling stations in Korea – a techno-economic and lifecycle assessment perspective. Green Chemistry, 2021, 23, 9625-9639.	9.0	14
3	A Bimetallic Ru ₃ Sn ₇ Nanoalloy on ZnO Catalyst for Selective Conversion of Biomass-Derived Furfural into 1,2-Pentanediol. ACS Sustainable Chemistry and Engineering, 2021, 9, 17242-17253.	6.7	9
4	Highly Efficient Hydrotalcite/1-Butanol Catalytic System for the Production of the High-Yield Fructose Crystal from Glucose. ACS Catalysis, 2020, 10, 1388-1396.	11.2	30
5	A Robust and Highly Selective Catalytic System of Copper–Silica Nanocomposite and 1â€Butanol in Fructose Hydrogenation to Mannitol. ChemSusChem, 2020, 13, 5050-5057.	6.8	5
6	Cross-metathesis of methyl oleate with ethylene over methyltrioxorhenium supported on ZnAl2O4 as a heterogeneous catalyst. Catalysis Communications, 2020, 144, 106088.	3.3	5
7	One-pot cascade ethylene oligomerization using Ni/Siral-30 and H-ZSM-5 catalysts. Applied Catalysis A: General, 2019, 572, 226-231.	4.3	18
8	An integrated process for the production of 2,5-dihydroxymethylfuran and its polymer from fructose. Green Chemistry, 2018, 20, 879-885.	9.0	54
9	Ni/SIRAL-30 as a heterogeneous catalyst for ethylene oligomerization. Applied Catalysis A: General, 2018, 562, 87-93.	4.3	29
10	An integrated process for production of jet-fuel range olefins from ethylene using Ni-AlSBA-15 and Amberlyst-35 catalysts. Applied Catalysis A: General, 2017, 530, 48-55.	4.3	29
11	Vapor-phase hydrogenolysis of glycerol to 1,2-propanediol using a chromium-free Ni-Cu-SiO2 nanocomposite catalyst. Catalysis Communications, 2016, 84, 5-10.	3.3	33
12	Design of a heterogeneous catalytic process for the continuous and direct synthesis of lactide from lactic acid. Green Chemistry, 2016, 18, 5978-5983.	9.0	40
13	Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chemistry, 2016, 18, 4542-4552.	9.0	197
14	Chemical Conversions of Biomassâ€Derived Platform Chemicals over Copper–Silica Nanocomposite Catalysts. ChemSusChem, 2015, 8, 2345-2357.	6.8	35
15	An integrated process for the production of 2,5-dimethylfuran from fructose. Green Chemistry, 2015, 17, 3310-3313.	9.0	79
16	Nickel-promoted copper–silica nanocomposite catalysts for hydrogenation of levulinic acid to lactones using formic acid as a hydrogen feeder. Applied Catalysis A: General, 2015, 491, 127-135.	4.3	107
17	Production of \hat{I}^3 -butyrolactone from biomass-derived 1,4-butanediol over novel copper-silica nanocomposite. Green Chemistry, 2011, 13, 1672.	9.0	64
18	Direct Hydrocyclization of Biomassâ€Derived Levulinic Acid to 2â€Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts. ChemSusChem, 2011, 4, 1749-1752.	6.8	192