
Paul Kong Thoo Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5788971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental modelling of Alzheimer's disease for therapeutic screening. European Journal of Medicinal Chemistry Reports, 2022, , 100044.	1.4	2
2	Impact of rapeseed pomace extract on markers of oxidative stress and DNA damage in human SH‣Y5Y cells. Journal of Food Biochemistry, 2021, 45, e13592.	2.9	2
3	Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127505.	2.2	15
4	GST-4-Dependent Suppression of Neurodegeneration in C. elegans Models of Parkinson's and Machado-Joseph Disease by Rapeseed Pomace Extract Supplementation. Frontiers in Neuroscience, 2019, 13, 1091.	2.8	36
5	The synergistic effect between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid sensing. Journal of Solid State Electrochemistry, 2019, 23, 1795-1809.	2.5	36
6	Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer's disease. MedChemComm, 2019, 10, 764-777.	3.4	28
7	Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 2019, 10, 2052-2072.	3.4	58
8	Determination of sinapine in rapeseed pomace extract: Its antioxidant and acetylcholinesterase inhibition properties. Food Chemistry, 2019, 276, 768-775.	8.2	34
9	Revalorisation of rapeseed pomace extracts: An in vitro study into its anti-oxidant and DNA protective properties. Food Chemistry, 2018, 239, 323-332.	8.2	25
10	Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties. European Journal of Medicinal Chemistry, 2018, 143, 745-754.	5.5	28
11	The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules, 2018, 23, 3283.	3.8	193
12	A Novel PAA Derivative with Enhanced Drug Efficacy in Pancreatic Cancer Cell Lines. Pharmaceuticals, 2018, 11, 91.	3.8	2
13	Caspase-independence and characterization of bisnaphthalimidopropyl spermidine induced cytotoxicity in HL60 cells. Toxicology in Vitro, 2018, 52, 342-350.	2.4	1
14	Thermally triggered theranostics for pancreatic cancer therapy. Nanoscale, 2017, 9, 12735-12745.	5.6	24
15	Dual-Laboratory Validation of a Method for the Determination of Fructans in Infant Formula and Adult Nutritionals: First Action 2016.14. Journal of AOAC INTERNATIONAL, 2017, 100, 753-767.	1.5	1
16	Novel bisnaphthalimidopropyl (BNIPs) derivatives as anticancer compounds targeting DNA in human breast cancer cells. Organic and Biomolecular Chemistry, 2016, 14, 9780-9789.	2.8	7
17	Development and validation of HPLC method with fluorometric detection for quantification of bisnaphthalimidopropyldiaminooctane in animal tissues following administration in polymeric nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2016, 120, 290-296.	2.8	3
18	Bisnaphthalimidopropyl diaminodicyclohexylmethane induces DNA damage and repair instability in triple negative breast cancer cells via p21 expression. Chemico-Biological Interactions, 2015, 242, 307-315.	4.0	8

PAUL KONG THOO LIN

#	Article	IF	CITATIONS
19	Synthesis, cytotoxicity and DNA binding of oxoazabenzo[de]anthracenes derivatives in colon cancer Caco-2 cells. European Journal of Medicinal Chemistry, 2013, 69, 754-761.	5.5	17
20	Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: <i>in vitro</i> and <i>in vivo</i> studies. Nanomedicine, 2012, 7, 1839-1849.	3.3	35
21	In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. International Journal of Antimicrobial Agents, 2012, 39, 424-430.	2.5	22
22	Anti-leishmanial activity of the bisnaphthalimidopropyl derivatives. Parasitology International, 2012, 61, 360-363.	1.3	18
23	Novel fluorescent amphiphilic poly(allylamine) and their supramacromolecular selfâ€assemblies in aqueous media. Polymers for Advanced Technologies, 2012, 23, 710-719.	3.2	11
24	The Use of Nano Polymeric Self-Assemblies Based on Novel Amphiphilic Polymers for Oral Hydrophobic Drug Delivery. Pharmaceutical Research, 2012, 29, 782-794.	3.5	15
25	The influence of bisnaphthalimidopropyl polyamines on DNA instability and repair in Caco-2 colon epithelial cells. Cell Biology and Toxicology, 2011, 27, 455-463.	5.3	7
26	<i>In Vitro</i> and <i>In Vivo</i> Antimalarial Activity Assays of Seeds from <i>Balanites aegyptiaca</i> : Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase. Journal of Parasitology Research, 2011, 2011, 1-9.	1.2	31
27	Nano self-assemblies based on cholate grafted poly-L-lysine enhanced the solubility of sterol-like drugs. Journal of Microencapsulation, 2011, 28, 752-762.	2.8	10
28	Synthesis, cytotoxicity and DNA-binding of novel bisnaphthalimidopropyl derivatives in breast cancer MDA-MB-231 cells. European Journal of Medicinal Chemistry, 2010, 45, 1430-1437.	5.5	18
29	In Vitro and In Vivo Anticancer Activity of a Novel Nano-sized Formulation Based on Self-assembling Polymers Against Pancreatic Cancer. Pharmaceutical Research, 2010, 27, 2694-2703.	3.5	30
30	Bisnaphthalimidopropyl Derivatives as Inhibitors of <i>Leishmania</i> SIR2 Related Proteinâ€1. ChemMedChem, 2010, 5, 140-147.	3.2	49
31	Bisnaphthalimidopropyl spermidine induces apoptosis within colon carcinoma cells. Chemico-Biological Interactions, 2009, 177, 1-6.	4.0	16
32	Two Salonitenolide Derivatives from the Aerial Parts of Centaurea Gigantea Inhibit the Growth of Colorectal Cancer Cells in Vitro. Natural Product Communications, 2007, 2, 1934578X0700200.	0.5	7
33	The synthesis and the in vitro cytotoxicity studies of bisnaphthalimidopropyl polyamine derivatives against colon cancer cells and parasite Leishmania infantum. Bioorganic and Medicinal Chemistry, 2007, 15, 541-545.	3.0	27
34	Polyamine Analogues and Derivatives as Potential Anticancer Agents. Current Bioactive Compounds, 2007, 3, 179-191.	0.5	8
35	Hederacine A and Hederacine B from Glechoma hederaceae Inhibit the Growth of Colorectal Cancer Cells in vitro. Natural Product Communications, 2006, 1, 1934578X0600100.	0.5	4
36	Synthesis and biological activities of bisnaphthalimido polyamines derivatives: cytotoxicity, DNA binding, DNA damage and drug localization in breast cancer MCF 7 cells. Biochemical Pharmacology, 2005, 69, 19-27.	4.4	29

PAUL KONG THOO LIN

#	Article	IF	CITATIONS
37	Two oxazane macrocycles. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o321-o324.	0.4	0
38	Immunological alterations induced by polyamine derivatives on murine splenocytes and human mononuclear cells. International Immunopharmacology, 2004, 4, 547-556.	3.8	21
39	The biological activities of new polyamine derivatives as potential therapeutic agents. Biochemical Society Transactions, 2003, 31, 407-410.	3.4	28
40	Novel oxa-spermine homologues: synthesis and cytotoxic properties. Bioorganic and Medicinal Chemistry, 2002, 10, 691-697.	3.0	7
41	Rerefinement of (μ-1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane-κ4N1,N17:N7,N11)bis[dichlorozinc(II)]. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m68-m69.	0.2	1
42	Further refinement of diaqua(1,7,11,17-tetraoxa-2,6,12,16-tetraazacycloeicosane-N,N′,N′′,N′′′)n dichloride. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m74-m76.	ickel(II)	1
43	Cytotoxicity, DNA binding and localisation of novel bis-naphthalimidopropyl polyamine derivatives. Chemico-Biological Interactions, 2001, 137, 15-24.	4.0	52
44	Synthesis and X-ray structures of Ni and Zn complexes of a novel oxa-azamacrocyclic system. Inorganic Chemistry Communication, 2000, 3, 267-270.	3.9	5
45	The synthesis and in vitro cytotoxic studies of novel oxa-spermidine derivatives and homologues. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1265-1267.	2.2	10
46	The synthesis and in vitro cytotoxic studies of novel bis-naphthalimidopropyl polyamine derivatives. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1609-1612.	2.2	35
47	Synthesis of Polyamines, Their Derivatives, Analogues and Conjugates. Synthesis, 2000, 2000, 1189-1207.	2.3	90
48	A thymine-like base analogue forms wobble pairs with adenine in a Z-DNA duplex. Journal of Molecular Biology, 1998, 282, 1005-1011.	4.2	12
49	Synthesis of Novel Adamantylalkoxyurea Derivatives from 2-(1-Adamantylimino)-1,3-oxathiolane. Synthesis, 1997, 1997, 38-40.	2.3	9
50	Effect of three novel polyamine oxa-analogues (MTR-OSPD, DIP-SPN and APPO-TFA) on the growth and proliferation of Swiss 3T3 cells. International Journal of Biochemistry and Cell Biology, 1996, 28, 697-704.	2.8	8
51	Direct Observation of Two Base-pairing Modes of a Cytosine-Thymine Analogue with Guanine in a DNAZ-form Duplex: Significance for Base Analogue Mutagenesis. Journal of Molecular Biology, 1995, 251, 665-673.	4.2	23
52	Nucleotide Incorporation Opposite Degenerate Bases byTaqDNA Polymerase. Nucleosides & Nucleosides . Nucleotides, 1994, 13, 1483-1492.	0.5	5
53	Synthesis of novel oxa-isosteres of spermidine and spermine. Tetrahedron Letters, 1994, 35, 3605-3608.	1.4	15
54	Oligonucleotides Containing Degenerate Bases. Methods in Molecular Biology, 1994, 26, 187-206.	0.9	1

PAUL KONG THOO LIN

#	Article	IF	CITATIONS
55	Molecular Basis for Methoxyamine-initiated Mutagenesis: 1H Nuclear Magnetic Resonance Studies of Oligonucleotide Duplexes Containing Base-modified Cytosine Residues. Journal of Molecular Biology, 1993, 230, 1068-1076.	4.2	47
56	Synthesis and duplex stability of oligonucleotides containing adenine-guanine analogues. Carbohydrate Research, 1992, 216, 129-139.	2.3	46
57	Molecular basis for methoxyamine initiated mutagenesis. Journal of Molecular Biology, 1991, 222, 711-723.	4.2	37
58	Synthesis and Stability of Oligonucleotides Containing Purine Base Analogues. Nucleosides & Nucleotides, 1991, 10, 675-677.	0.5	2
59	Molecular and crystal structure of d(CGCGmo4CG): N4-methoxycytosine · guanine base-pairs in Z-DNA. Journal of Molecular Biology, 1990, 216, 773-781.	4.2	42
60	The application of oligodeoxyribonucleotides containing degenerate bases. Collection of Czechoslovak Chemical Communications, 1990, 55, 213-215.	1.0	5
61	Oligonucleotides Containing Degenerate Bases: Synthesis and Uses. , 0, , 187-206.		ο