Meng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/578889/publications.pdf

Version: 2024-02-01

455 papers

31,079 citations

90 h-index 150 g-index

464 all docs

464 docs citations

times ranked

464

23418 citing authors

#	Article	IF	CITATIONS
1	Fabrication and properties of novel chitosan/ZnO composite bioplastic. Cellulose, 2022, 29, 233-243.	2.4	15
2	Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomaterialia, 2022, 141, 102-113.	4.1	40
3	Ultrapure deep-blue aggregation-induced emission and thermally activated delayed fluorescence emitters for efficient OLEDs with CIE _{<i>y</i>} < 0.1 and low efficiency roll-offs. Journal of Materials Chemistry C, 2022, 10, 3163-3171.	2.7	22
4	Anisotropic Hybrid Hydrogels Constructed via the Noncovalent Assembly for Biomimetic Tissue Scaffold. Advanced Functional Materials, 2022, 32, .	7.8	32
5	Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Biomacromolecules, 2022, 23, 877-888.	2.6	15
6	Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing. Carbohydrate Polymers, 2022, 290, 119444.	5.1	42
7	Bio-polyols based waterborne polyurethane coatings reinforced with chitosan-modified ZnO nanoparticles. International Journal of Biological Macromolecules, 2022, 208, 97-104.	3.6	14
8	Facile fabrication of highly dispersed Pd catalyst on nanoporous chitosan and its application in environmental catalysis. Carbohydrate Polymers, 2022, 286, 119313.	5.1	13
9	High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers, 2022, 291, 119586.	5.1	23
10	Recent Progress in Highâ€Strength and Robust Regenerated Cellulose Materials. Advanced Materials, 2021, 33, e2000682.	11.1	244
11	Insight into Morphology Change of Chitin Microspheres using Tertiary Butyl Alcohol/H ₂ O Binary System Freezeâ€Drying Method. Macromolecular Rapid Communications, 2021, 42, e2000502.	2.0	5
12	One-step electrochemically induced counterion exchange to construct free-standing carboxylated cellulose nanofiber/metal composite hydrogels. Carbohydrate Polymers, 2021, 254, 117464.	5.1	11
13	Improving dielectric properties of poly(arylene ether nitrile) composites by employing core-shell structured BaTiO3@polydopamine and MoS2@polydopamine interlinked with poly(ethylene imine) for high-temperature applications. Journal of Alloys and Compounds, 2021, 856, 158213.	2.8	20
14	Chitin microsphere supported Pd nanoparticles as an efficient and recoverable catalyst for CO oxidation and Heck coupling reaction. Carbohydrate Polymers, 2021, 251, 117020.	5.1	20
15	Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Materials Horizons, 2021, 8, 2503-2512.	6.4	57
16	Metal-free electrochemical C3-sulfonylation of imidazo[1,2- <i>a</i>)pyridines. Organic Chemistry Frontiers, 2021, 8, 3815-3819.	2.3	31
17	Robust, magnetic cellulose/Fe3O4 film with anisotropic sensory property. Cellulose, 2021, 28, 2353-2364.	2.4	6
18	Flame Retardant Modified Bioâ€Based Waterborne Polyurethane Dispersions Derived from Castor Oil and Soy Polyol. European Journal of Lipid Science and Technology, 2021, 123, 2000248.	1.0	18

#	Article	IF	CITATIONS
19	Noncompressible Hemostasis and Bone Regeneration Induced by an Absorbable Bioadhesive Selfâ€Healing Hydrogel. Advanced Functional Materials, 2021, 31, 2009189.	7.8	133
20	Electrochemical Oxidation Enables Regioselective and Scalable \hat{l} ±-C(sp ³)-H Acyloxylation of Sulfides. Journal of the American Chemical Society, 2021, 143, 3628-3637.	6.6	61
21	Polypyrrole Nanotube Sponge Host for Stable Lithium-Metal Batteries under Lean Electrolyte Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2543-2551.	3.2	11
22	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	5.1	32
23	Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS Applied Materials & Discrete Repair. ACS Applied Materials & Discrete Repair.	4.0	67
24	Pt(IV) Prodrugs Designed to Embed in Nanotubes of a Polysaccharide for Drug Delivery. ACS Applied Bio Materials, 2021, 4, 4841-4848.	2.3	5
25	Simultaneously improving the fracture toughness and flame retardancy of soybean oil-based waterborne polyurethane coatings by phosphorus-nitrogen chain extender. Industrial Crops and Products, 2021, 163, 113328.	2.5	24
26	Alternate-Layered MXene Composite Film-Based Triboelectric Nanogenerator with Enhanced Electrical Performance. Nanoscale Research Letters, 2021, 16, 81.	3.1	13
27	Construction of conductive hydroxyethyl cellulose/soy protein isolate/polypyrrole composite sponges and their performances. Cellulose, 2021, 28, 8527-8539.	2.4	1
28	Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities. International Journal of Biological Macromolecules, 2021, 182, 1170-1178.	3.6	11
29	V ₂ CT _{<i>x</i>} MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9961-9969.	3.2	13
30	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	5.1	86
31	Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40953-40963.	4.0	25
32	Highly Dispersed Pd Clusters Anchored on Nanoporous Cellulose Microspheres as a Highly Efficient Catalyst for the Suzuki Coupling Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44418-44426.	4.0	16
33	Structure and properties of cellulose/HAP nanocomposite hydrogels. International Journal of Biological Macromolecules, 2021, 186, 377-384.	3.6	23
34	Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydrate Polymers, 2021, 269, 118276.	5.1	37
35	New insights into the anti- hepatoma mechanism of triple-helix \hat{l}^2 - glucan by metabolomics profiling. Carbohydrate Polymers, 2021, 269, 118289.	5.1	10
36	Surface engineering of cellulose film with myristic acid for high strength, self-cleaning and biodegradable packaging materials. Carbohydrate Polymers, 2021, 269, 118315.	5.1	17

#	Article	IF	CITATIONS
37	Biocompatible, antibacterial and anti-inflammatory zinc ion cross-linked quaternized cellulose‑sodium alginate composite sponges for accelerated wound healing. International Journal of Biological Macromolecules, 2021, 191, 27-39.	3.6	27
38	Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture. Carbohydrate Polymers, 2021, 273, 118547.	5.1	42
39	Superior strength and highly thermoconductive cellulose/ boron nitride film by stretch-induced alignment. Journal of Materials Chemistry A, 2021, 9, 10304-10315.	5.2	65
40	Research Progress in the Multilayer Hydrogels. Gels, 2021, 7, 172.	2.1	10
41	Construction of chitosan/Ag nanocomposite sponges and their properties. International Journal of Biological Macromolecules, 2021, 192, 272-277.	3.6	20
42	Solvent Mediating the <i>in Situ</i> Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds. ACS Nano, 2021, 15, 17790-17803.	7.3	25
43	Ti3Si0.75Al0.25C2 Nanosheets as Promising Anode Material for Li-Ion Batteries. Nanomaterials, 2021, 11, 3449.	1.9	7
44	Construction of \hat{l}^2 -FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. Carbohydrate Polymers, 2020, 229, 115470.	5.1	39
45	Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation. Carbohydrate Polymers, 2020, 229, 115467.	5.1	65
46	Direct current electric field induced gradient hydrogel actuators with rapid thermo-responsive performance as soft manipulators. Journal of Materials Chemistry C, 2020, 8, 2756-2763.	2.7	35
47	Biocompatible and biodegradable chitosan/sodium polyacrylate polyelectrolyte complex hydrogels with smart responsiveness. International Journal of Biological Macromolecules, 2020, 155, 1245-1251.	3.6	26
48	Flexible and strong Fe3O4/cellulose composite film as magnetic and UV sensor. Applied Surface Science, 2020, 507, 145092.	3.1	30
49	Dual Play of Chitinâ€Derived Nâ€Doped Carbon Nanosheets Enabling Highâ€Performance Naâ€SeS ₂ Half/Full Cells. Batteries and Supercaps, 2020, 3, 165-173.	2.4	16
50	Green and Economical Strategy for Spinning Robust Cellulose Filaments. ACS Sustainable Chemistry and Engineering, 2020, 8, 14927-14937.	3.2	20
51	Natural polysaccharides with different conformations: extraction, structure and anti-tumor activity. Journal of Materials Chemistry B, 2020, 8, 9652-9667.	2.9	47
52	Facile Construction of a Highly Dispersed Pt Nanocatalyst Anchored on Biomass-Derived N/O-Doped Carbon Nanofibrous Microspheres and Its Catalytic Hydrogenation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51459-51467.	4.0	23
53	The conversion of nanocellulose into solvent-free nanoscale liquid crystals by attaching long side-arms for multi-responsive optical materials. Journal of Materials Chemistry C, 2020, 8, 11022-11031.	2.7	13
54	Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Research, 2020, 13, 1604-1613.	5.8	21

#	Article	IF	CITATIONS
55	<scp>Highâ€Strength</scp> and Tough Crystalline <scp>Polysaccharideâ€Based</scp> Materials ^{â€} . Chinese Journal of Chemistry, 2020, 38, 761-771.	2.6	12
56	Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. Carbohydrate Polymers, 2020, 237, 116114.	5.1	34
57	Distinctive Viewpoint on the Rapid Dissolution Mechanism of α-Chitin in Aqueous Potassium Hydroxide–Urea Solution at Low Temperatures. Macromolecules, 2020, 53, 5588-5598.	2.2	26
58	Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 13935-13941.	5.2	140
59	Universal preparation of cellulose-based colorimetric sensor for heavy metal ion detection. Carbohydrate Polymers, 2020, 236, 116037.	5.1	20
60	Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7631-7638.	4.0	105
61	Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules, 2020, 21, 1653-1677.	2.6	137
62	Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix \hat{l}^2 -d-glucan. Carbohydrate Polymers, 2020, 240, 116329.	5.1	36
63	Poly(arylene ether nitrile) ternary dielectric composites modulated via polydopamine-assisted BaTiO3 decorating MoS2 sheets. Ceramics International, 2020, 46, 19181-19190.	2.3	19
64	Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture. Journal of Materials Chemistry B, 2019, 7, 5190-5198.	2.9	22
65	Transparent, Antifreezing, Ionic Conductive Cellulose Hydrogel with Stable Sensitivity at Subzero Temperature. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41710-41716.	4.0	141
66	Customizable Multidimensional Self-Wrinkling Structure Constructed via Modulus Gradient in Chitosan Hydrogels. Chemistry of Materials, 2019, 31, 10032-10039.	3.2	55
67	Shape memory histocompatible and biodegradable sponges for subcutaneous defect filling and repair: greatly reducing surgical incision. Journal of Materials Chemistry B, 2019, 7, 5848-5860.	2.9	23
68	Editable and bidirectional shape memory chitin hydrogels based on physical/chemical crosslinking. Cellulose, 2019, 26, 9085-9094.	2.4	7
69	Mechanically Strong Shape-Memory and Solvent-Resistant Double-Network Polyurethane/Nanoporous Cellulose Gel Nanocomposites. ACS Sustainable Chemistry and Engineering, 2019, 7, 15974-15982.	3.2	26
70	Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. International Journal of Biological Macromolecules, 2019, 129, 878-886.	3.6	50
71	New Approach for the Fabrication of Carboxymethyl Cellulose Nanofibrils and the Reinforcement Effect in Water-Borne Polyurethane. ACS Sustainable Chemistry and Engineering, 2019, 7, 11850-11860.	3.2	31
72	2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries. Nanoscale, 2019, 11, 12626-12636.	2.8	53

#	Article	IF	Citations
73	Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydrate Polymers, 2019, 222, 114977.	5.1	44
74	Controllable Wrinkling Patterns on Chitosan Microspheres Generated from Self-Assembling Metal Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22824-22833.	4.0	20
75	Cellulose/Chitosan Composite Multifilament Fibers with Two-Switch Shape Memory Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 6981-6990.	3.2	62
76	High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Biomacromolecules, 2019, 20, 1989-1995.	2.6	106
77	Mott–Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Doped Carbon. ACS Catalysis, 2019, 9, 4632-4641.	5.5	93
78	Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano, 2019, 13, 4843-4853.	7.3	174
79	Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chemistry of Materials, 2019, 31, 2078-2087.	3.2	66
80	Robust chitin films with good biocompatibility and breathable properties. Carbohydrate Polymers, 2019, 212, 361-367.	5.1	46
81	Cross-Linked Cellulose Membranes with Robust Mechanical Property, Self-Adaptive Breathability, and Excellent Biocompatibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 19799-19806.	3.2	29
82	Isolation and characterization of cellulose nanocrystals from pueraria root residue. International Journal of Biological Macromolecules, 2019, 129, 1081-1089.	3.6	61
83	Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydrate Polymers, 2019, 208, 86-96.	5.1	47
84	Injectable, Self-Healing, \hat{I}^2 -Chitin-Based Hydrogels with Excellent Cytocompatibility, Antibacterial Activity, and Potential As Drug/Cell Carriers. ACS Applied Bio Materials, 2019, 2, 196-204.	2.3	42
85	Construction of cellulose/ZnO composite microspheres in NaOH/zinc nitrate aqueous solution via one-step method. Cellulose, 2019, 26, 557-568.	2.4	17
86	Pd/TiO ₂ @ Carbon Microspheres Derived from Chitin for Highly Efficient Photocatalytic Degradation of Volatile Organic Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 1658-1666.	3.2	34
87	Unique Stress Whitening and High-Toughness Double-Cross-Linked Cellulose Films. ACS Sustainable Chemistry and Engineering, 2019, 7, 1707-1717.	3.2	30
88	Construction of size-controllable gold nanoparticles immobilized on polysaccharide nanotubes by in situ one-pot synthesis. International Journal of Biological Macromolecules, 2018, 113, 240-247.	3.6	16
89	Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering. Chemical Engineering Journal, 2018, 341, 402-413.	6.6	35
90	Castor oilâ€based polyurethane/silica nanocomposites: Morphology, thermal and mechanical properties. Polymer Composites, 2018, 39, E1800.	2.3	23

#	Article	IF	Citations
91	Mechanically Strong Multifilament Fibers Spun from Cellulose Solution via Inducing Formation of Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5314-5321.	3.2	56
92	Construction of novel cellulose/chitosan composite hydrogels and films and their applications. Cellulose, 2018, 25, 1987-1996.	2.4	45
93	Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts. Nano Research, 2018, 11, 3145-3153.	5.8	32
94	Microstructural Characteristics and Mechanical Behavior of Spark Plasma-Sintered Cu–Cr–rGO Copper Matrix Composites. Acta Metallurgica Sinica (English Letters), 2018, 31, 761-770.	1.5	16
95	Influences of Coagulation Conditions on the Structure and Properties of Regenerated Cellulose Filaments via Wet-Spinning in LiOH/Urea Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 4056-4067.	3.2	47
96	Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds. Biomacromolecules, 2018, 19, 340-352.	2.6	70
97	Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions. Carbohydrate Polymers, 2018, 185, 138-144.	5.1	53
98	Construction of Transparent Cellulose-Based Nanocomposite Papers and Potential Application in Flexible Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 8040-8047.	3.2	86
99	Recent advances in chitin based materials constructed via physical methods. Progress in Polymer Science, 2018, 82, 1-33.	11.8	276
100	Dual Physical Crosslinking Strategy to Construct Moldable Hydrogels with Ultrahigh Strength and Toughness. Advanced Functional Materials, 2018, 28, 1800739.	7.8	125
101	4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide. ACS Macro Letters, 2018, 7, 442-446.	2.3	113
102	Phase transition identification of cellulose nanocrystal suspensions derived from various raw materials. Journal of Applied Polymer Science, 2018, 135, 45702.	1.3	29
103	Reinforcement of Castor Oil-Based Polyurethane with Surface Modification of Attapulgite. Polymers, 2018, 10, 1236.	2.0	12
104	On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Diterfaces, 2018, 10, 41076-41088.	4.0	351
105	Triple-Helix Conformation of a Polysaccharide Determined with Light Scattering, AFM, and Molecular Dynamics Simulation. Macromolecules, 2018, 51, 10150-10159.	2.2	48
106	Super Strong All-Cellulose Composite Filaments by Combination of Inducing Nanofiber Formation and Adding Nanofibrillated Cellulose. Biomacromolecules, 2018, 19, 4386-4395.	2.6	27
107	Green Fabrication of Amphiphilic Quaternized βâ€Chitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing. Advanced Materials, 2018, 30, e1801100.	11.1	242
108	High strength cellulose/ATT composite films with good oxygen barrier property for sustainable packaging applications. Cellulose, 2018, 25, 4145-4154.	2.4	21

#	Article	IF	CITATIONS
109	Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28918-28927.	4.0	78
110	Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth. Chemistry of Materials, 2018, 30, 5175-5183.	3.2	137
111	Mechanically strong polystyrene nanocomposites by peroxide-induced grafting of styrene monomers within nanoporous cellulose gels. Carbohydrate Polymers, 2018, 199, 473-481.	5.1	16
112	Selective hydrothermal degradation of cellulose to formic acid in alkaline solutions. Cellulose, 2018, 25, 5659-5668.	2.4	13
113	One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chemical Engineering Journal, 2017, 315, 573-582.	6.6	44
114	Ultra-lightweight cellulose foam material: preparation and properties. Cellulose, 2017, 24, 1417-1426.	2.4	45
115	Creation of the tunable color light emission of cellulose hydrogels consisting of primary rare-earth compounds. Carbohydrate Polymers, 2017, 161, 235-243.	5.1	12
116	Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater. Chemical Engineering Journal, 2017, 317, 766-776.	6.6	72
117	Self-host blue-emitting iridium dendrimer for solution-processed non-doped phosphorescent organic light-emitting diodes with flat efficiency roll-off and less phase segregation. Organic Electronics, 2017, 45, 49-56.	1.4	12
118	Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 7486-7490.	1.3	17
119	Recyclable Universal Solvents for Chitin to Chitosan with Various Degrees of Acetylation and Construction of Robust Hydrogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2725-2733.	3.2	87
120	Dissolution and Metastable Solution of Cellulose in NaOH/Thiourea at 8 \hat{A}° C for Construction of Nanofibers. Journal of Physical Chemistry B, 2017, 121, 1793-1801.	1.2	39
121	Highly Efficient One-Step Purification of Sulfated Polysaccharides via Chitosan Microspheres Adsorbents. ACS Sustainable Chemistry and Engineering, 2017, 5, 3195-3203.	3.2	39
122	Construction of alternate layered chitosan/alginate composite hydrogels and their properties. Materials Letters, 2017, 200, 43-46.	1.3	16
123	Structure and mechanical properties of in-situ titanium matrix composites with homogeneous Ti 5 Si 3 equiaxial particle-reinforcements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 73-79.	2.6	22
124	Extremely Strong and Transparent Chitin Films: A Highâ€Efficiency, Energyâ€Saving, and "Green―Route Using an Aqueous KOH/Urea Solution. Advanced Functional Materials, 2017, 27, 1701100.	7.8	121
125	Hierarchical Microspheres Constructed from Chitin Nanofibers Penetrated Hydroxyapatite Crystals for Bone Regeneration. Biomacromolecules, 2017, 18, 2080-2089.	2.6	42
126	Carbazole-dendrite-encapsulated electron acceptor core for constructing thermally activated delayed fluorescence emitters used in nondoped solution-processed organic light-emitting diodes. Organic Electronics, 2017, 48, 262-270.	1.4	20

#	Article	IF	CITATIONS
127	Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities. Nano Research, 2017, 10, 3775-3789.	5.8	45
128	Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Physical Chemistry Chemical Physics, 2017, 19, 17909-17917.	1.3	27
129	Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. Journal of Materials Chemistry B, 2017, 5, 2952-2963.	2.9	70
130	Facile construction of cellulose nanocomposite aerogel containing TiO2 nanoparticles with high content and small size and their applications. Cellulose, 2017, 24, 2229-2240.	2.4	35
131	Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose, 2017, 24, 4641-4651.	2.4	18
132	Polyaniline promotes peripheral nerve regeneration by enhancement of the brain-derived neurotrophic factor and ciliary neurotrophic factor expression and activation of the ERK1/2/MAPK signaling pathway. Molecular Medicine Reports, 2017, 16, 7534-7540.	1.1	30
133	High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth. Biomacromolecules, 2017, 18, 3904-3912.	2.6	48
134	Biocompatible and Biodegradable Bioplastics Constructed from Chitin via a "Green―Pathway for Bone Repair. ACS Sustainable Chemistry and Engineering, 2017, 5, 9126-9135.	3.2	71
135	Extended chain conformation of \hat{l}^2 -glucan and its effect on antitumor activity. Journal of Materials Chemistry B, 2017, 5, 5623-5631.	2.9	43
136	Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydrate Polymers, 2017, 174, 830-840.	5.1	108
137	Heat-induced conformation transition of the comb-branched β-glucan in dimethyl sulfoxide/water mixture. Carbohydrate Polymers, 2017, 157, 1404-1412.	5.1	8
138	Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter, 2017, 13, 345-354.	1.2	144
139	Highly Efficient Selfâ€Healable and Dual Responsive Celluloseâ€Based Hydrogels for Controlled Release and 3D Cell Culture. Advanced Functional Materials, 2017, 27, 1703174.	7.8	325
140	Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43154-43162.	4.0	96
141	Facile oneâ€step synthesis of bioâ€based AESO resins. European Journal of Lipid Science and Technology, 2016, 118, 1463-1469.	1.0	17
142	Construction of Fluorescent Cellulose Biobased Plastics and their Potential Application in Anti-Counterfeiting Banknotes. Macromolecular Materials and Engineering, 2016, 301, 377-382.	1.7	14
143	A Hierarchical N/Sâ€Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1501929.	10.2	460
144	Natural Materials Assembled, Biodegradable, and Transparent Paper-Based Electret Nanogenerator. ACS Applied Materials & Diterfaces, 2016, 8, 35587-35592.	4.0	74

#	Article	IF	CITATIONS
145	Methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate to dimethylhexane-1,6-dicarbamate over Zn/SiO ₂ catalyst. RSC Advances, 2016, 6, 51446-51455.	1.7	10
146	The linear structure of β-glucan from baker's yeast and its activation of macrophage-like RAW264.7 cells. Carbohydrate Polymers, 2016, 148, 61-68.	5.1	42
147	Highly Selective Conversion of Cellobiose and Cellulose to Hexitols by Ru-Based Homogeneous Catalyst under Acidic Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 5263-5270.	1.8	12
148	Strong and Rapidly Selfâ€Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare Materials, 2016, 5, 2813-2822.	3.9	138
149	Fabrication of Hollow Materials by Fast Pyrolysis of Cellulose Composite Fibers with Heterogeneous Structures. Angewandte Chemie - International Edition, 2016, 55, 13504-13508.	7.2	21
150	Fabrication of Hollow Materials by Fast Pyrolysis of Cellulose Composite Fibers with Heterogeneous Structures. Angewandte Chemie, 2016, 128, 13702-13706.	1.6	2
151	Spherical nanocomposite particles prepared from mixed cellulose–chitosan solutions. Cellulose, 2016, 23, 3105-3115.	2.4	40
152	Light weight, mechanically strong and biocompatible $\hat{l}\pm$ -chitin aerogels from different aqueous alkali hydroxide/urea solutions. Science China Chemistry, 2016, 59, 1405-1414.	4.2	27
153	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27, 482-491.	8.2	299
154	Construction of biocompatible regenerated cellulose/SPI composite beads using high-voltage electrostatic technique. RSC Advances, 2016, 6, 52528-52538.	1.7	10
155	Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose, 2016, 23, 3463-3473.	2.4	29
156	Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. Biomacromolecules, 2016, 17, 2839-2848.	2.6	87
157	Ultraâ€Stretchable and Forceâ€Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Advanced Materials, 2016, 28, 8037-8044.	11.1	274
158	Highâ€Strength and Highâ€Toughness Doubleâ€Crossâ€Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Crossâ€Linking. Advanced Functional Materials, 2016, 26, 6279-6287.	7.8	400
159	Tough and Cell-Compatible Chitosan Physical Hydrogels for Mouse Bone Mesenchymal Stem Cells in Vitro. ACS Applied Materials & Interfaces, 2016, 8, 19739-19746.	4.0	70
160	Hydrogels: Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials (Adv.) Tj ETQq0 0 0 rgBT	Ovgrlock I	10 T f 50 142 1
161	Anti-tumor effect of \hat{l}^2 -glucan from Lentinus edodes and the underlying mechanism. Scientific Reports, 2016, 6, 28802.	1.6	55
162	Highâ€Flexibility, Highâ€Toughness Doubleâ€Crossâ€Linked Chitin Hydrogels by Sequential Chemical and Physical Crossâ€Linkings. Advanced Materials, 2016, 28, 5844-5849.	11.1	240

#	Article	IF	CITATIONS
163	Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Research, 2016, 9, 2149-2161.	5.8	48
164	Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17090-17097.	4.0	117
165	Single chain morphology and nanofiber-like aggregates of branched \hat{l}^2 -(1 \hat{a} †'3)- d -glucan in water/dimethylsulfoxide solution. Carbohydrate Polymers, 2016, 137, 287-294.	5.1	18
166	Quaternized Chitosan/Poly(acrylic acid) Polyelectrolyte Complex Hydrogels with Tough, Self-Recovery, and Tunable Mechanical Properties. Macromolecules, 2016, 49, 1049-1059.	2.2	153
167	Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Research, 2016, 9, 214-223.	5.8	51
168	Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering. ACS Applied Materials & Engineering. ACS Applied & Engineering. ACS Applied & Engineering. ACS Applied & Engineeri	4.0	120
169	Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors. Carbohydrate Polymers, 2016, 137, 600-607.	5.1	75
170	Changes in shape and size of the stiff branched \hat{l}^2 -glucan in dimethlysulfoxide/water solutions. Carbohydrate Polymers, 2016, 138, 86-93.	5.1	19
171	Hydrogenation of Aldehydes Catalyzed by an Available Ruthenium Complex. Organic Letters, 2016, 18, 1518-1521.	2.4	39
172	Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomaterialia, 2016, 35, 228-237.	4.1	109
173	Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(<scp>l</scp> -lactide- <i>co</i> -caprolactone) Nanocomposites. Biomacromolecules, 2016, 17, 1506-1515.	2.6	32
174	Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. Cellulose, 2016, 23, 749-763.	2.4	89
175	Facile synthesis and characterization of reduced graphene oxide/copper composites using freeze-drying and spark plasma sintering. Materials Letters, 2016, 166, 67-70.	1.3	25
176	Improvement in physical and biological properties of chitosan/soy protein films by surface grafted heparin. International Journal of Biological Macromolecules, 2016, 83, 19-29.	3.6	38
177	Recent advances in regenerated cellulose materials. Progress in Polymer Science, 2016, 53, 169-206.	11.8	775
178	Thermal, mechanical, and morphological properties of functionalized grapheneâ€reinforced bioâ€based polyurethane nanocomposites. European Journal of Lipid Science and Technology, 2015, 117, 1940-1946.	1.0	21
179	Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol–ene click reactions. Polymer Chemistry, 2015, 6, 3543-3548.	1.9	50
180	Yttrium oxide modified Cu/ZnO/Al ₂ O ₃ catalysts via hydrotalcite-like precursors for CO ₂ hydrogenation to methanol. Catalysis Science and Technology, 2015, 5, 4365-4377.	2.1	99

#	Article	IF	CITATIONS
181	Microstructure and mechanical properties of in-situ synthesized (ZrC + Er2O3+ ZrCr2)/Zr composite prepared by arc-melting. Materials and Design, 2015, 88, 619-624.	3.3	4
182	Hydrophobic Modification of Chitin Whisker and Its Potential Application in Structuring Oil. Langmuir, 2015, 31, 1641-1648.	1.6	55
183	Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose, 2015, 22, 553-563.	2.4	26
184	Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties through One-Step Coagulation. ACS Applied Materials & Interfaces, 2015, 7, 2597-2606.	4.0	243
185	Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose, 2015, 22, 339-349.	2.4	113
186	Highly Biocompatible Nanofibrous Microspheres Selfâ€Assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers. Angewandte Chemie - International Edition, 2015, 54, 5152-5156.	7.2	174
187	An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresource Technology, 2015, 194, 403-406.	4.8	201
188	Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. Journal of Materials Chemistry A, 2015, 3, 16424-16429.	5.2	47
189	Intermolecular Interaction and the Extended Wormlike Chain Conformation of Chitin in NaOH/Urea Aqueous Solution. Biomacromolecules, 2015, 16, 1410-1417.	2.6	164
190	Light-promoted N,N-dimethylation of amine and nitro compound with methanol catalyzed by Pd/TiO ₂ at room temperature. RSC Advances, 2015, 5, 14514-14521.	1.7	62
191	High Strength Chitosan Hydrogels with Biocompatibility via New Avenue Based on Constructing Nanofibrous Architecture. Macromolecules, 2015, 48, 2706-2714.	2.2	245
192	Synthesis of two-dimensional mesoporous carbon nitride under different carbonization temperatures and investigation of its catalytic properties in Knoevenagel condensations. RSC Advances, 2015, 5, 22838-22846.	1.7	32
193	Room temperature N-alkylation of amines with alcohols under UV irradiation catalyzed by Cu–Mo/TiO ₂ . Catalysis Science and Technology, 2015, 5, 3226-3234.	2.1	39
194	Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22990-22998.	4.0	26
195	Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties. Cellulose, 2015, 22, 3799-3810.	2.4	26
196	Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules, 2015, 16, 3499-3507.	2.6	105
197	Effectively promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution. Journal of Materials Chemistry B, 2015, 3, 7518-7528.	2.9	73
198	Magnetic cellulose–TiO ₂ nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chemical Communications, 2015, 51, 338-341.	2.2	52

#	Article	IF	Citations
199	Construction of selenium nanoparticles \hat{l}^2 -glucan composites for enhancement of the antitumor activity. Carbohydrate Polymers, 2015, 117, 434-442.	5.1	127
200	Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydrate Polymers, 2015, 115, 269-275.	5.1	70
201	Transparent and Printable Regenerated Kenaf Cellulose/PVA Film. BioResources, 2014, 9, .	0.5	17
202	Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hýckel charges. Cellulose, 2014, 21, 4019-4027.	2.4	10
203	Structure and properties of films fabricated from chitin solution by coagulating with heating. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
204	Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis. Journal of Chromatography A, 2014, 1343, 160-166.	1.8	35
205	Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. Journal of Materials Science, 2014, 49, 2235-2242.	1.7	86
206	Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose, 2014, 21, 1183-1192.	2.4	189
207	Chain conformation and anti-tumor activity of derivatives of polysaccharide from Rhizoma Panacis Japonici. Carbohydrate Polymers, 2014, 105, 308-316.	5.1	69
208	In Situ Synthesis of Robust Conductive Cellulose/Polypyrrole Composite Aerogels and Their Potential Application in Nerve Regeneration. Angewandte Chemie - International Edition, 2014, 53, 5380-5384.	7.2	186
209	Characterization of new sorbent constructed from Fe3O4/chitin magnetic beads for the dynamic adsorption of Cd2+ ions. Journal of Materials Science, 2014, 49, 123-133.	1.7	35
210	Hydrophobic Modification on Surface of Chitin Sponges for Highly Effective Separation of Oil. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19933-19942.	4.0	219
211	Advances in Cellulose Hydrophobicity Improvement. ACS Symposium Series, 2014, , 241-274.	0.5	8
212	Constructing flexible cellulose–Cu nanocomposite film through in situ coating with highly single-side conductive performance. Journal of Materials Chemistry C, 2014, 2, 524-529.	2.7	27
213	Preparation of helical fibers from cellulose–cuprammonium solution based on liquid rope coiling. RSC Advances, 2014, 4, 9112.	1.7	32
214	Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. Journal of Materials Chemistry A, 2014, 2, 8491-8499.	5.2	47
215	A graphene oxide facilitated a highly porous and effective antibacterial regenerated cellulose membrane containing stabilized silver nanoparticles. Cellulose, 2014, 21, 4261-4270.	2.4	26
216	Construction of cellulose–phosphor hybrid hydrogels and their application for bioimaging. Journal of Materials Chemistry B, 2014, 2, 7559-7566.	2.9	39

#	Article	IF	Citations
217	Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility. Biomacromolecules, 2014, 15, 3358-3365.	2.6	101
218	Portable Visible-Light Photocatalysts Constructed from Cu ₂ O Nanoparticles and Graphene Oxide in Cellulose Matrix. Journal of Physical Chemistry C, 2014, 118, 7202-7210.	1.5	66
219	In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose, 2014, 21, 3371-3382.	2.4	32
220	Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors. Cellulose, 2014, 21, 2337-2347.	2.4	23
221	Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose, 2014, 21, 2819-2830.	2.4	36
222	Novel fibers fabricated directly from chitin solution and their application as wound dressing. Journal of Materials Chemistry B, 2014, 2, 3427.	2.9	91
223	Ag–Fe ₃ O ₄ nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chemistry, 2014, 16, 2835-2845.	4.6	120
224	Construction of PANI–cellulose composite fibers with good antistatic properties. Journal of Materials Chemistry A, 2014, 2, 7669-7673.	5.2	39
225	Intermolecular Interactions and 3D Structure in Cellulose–NaOH–Urea Aqueous System. Journal of Physical Chemistry B, 2014, 118, 10250-10257.	1.2	88
226	Fast Contact of Solid–Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1872-1878.	4.0	87
227	Hair-Inspired Crystal Growth of HOA in Cavities of Cellulose Matrix via Hydrophobic–Hydrophilic Interface Interaction. ACS Applied Materials & Interfaces, 2014, 6, 9508-9516.	4.0	15
228	Application of Chitin Hydrogels for Seed Germination, Seedling Growth of Rapeseed. Journal of Plant Growth Regulation, 2014, 33, 195-201.	2.8	28
229	Structure and Properties of Cellulose Films Reinforced by Chitin Whiskers. Macromolecular Materials and Engineering, 2013, 298, 303-310.	1.7	27
230	A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. Journal of Materials Chemistry A, 2013, 1, 6678.	5.2	138
231	Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose, 2013, 20, 1669-1677.	2.4	67
232	Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydrate Polymers, 2013, 92, 1752-1760.	5.1	71
233	Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices. Cellulose, 2013, 20, 1897-1909.	2.4	22
234	Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds. Cellulose, 2013, 20, 1911-1923.	2.4	54

#	Article	IF	CITATIONS
235	Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter, 2013, 9, 10129.	1.2	51
236	High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1, 1867-1874.	5.2	144
237	Self-assembly of graphene oxide on the surface of aluminum foil. New Journal of Chemistry, 2013, 37, 181-187.	1.4	22
238	Controllable Stearic Acid Crystal Induced High Hydrophobicity on Cellulose Film Surface. ACS Applied Materials & Samp; Interfaces, 2013, 5, 585-591.	4.0	76
239	New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Research International, 2013, 52, 387-400.	2.9	116
240	Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydrate Polymers, 2013, 91, 7-13.	5.1	121
241	Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydrate Polymers, 2013, 92, 1315-1320.	5.1	52
242	Polysaccharide-based polyelectrolytes hollow microcapsules constructed by layer-by-layer technique. Carbohydrate Polymers, 2013, 96, 528-535.	5.1	8
243	NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose, 2013, 20, 613-621.	2.4	74
244	Effect of temperature on the fluorescence emission of carbazole-substituted methylcellulose in dilute aqueous solutions. Cellulose, 2013, 20, 105-114.	2.4	3
245	Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. Journal of Materials Chemistry A, 2013, 1, 4198.	5. 2	69
246	Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2897-2902.	4.0	218
247	Facile preparation of robust and biocompatible chitin aerogels. Journal of Materials Chemistry, 2012, 22, 5801.	6.7	163
248	Rheological behavior of cyanoethyl celluloses in aqueous solutions. Cellulose, 2012, 19, 1547-1555.	2.4	5
249	Exploring Quaternized Hydroxyethylcellulose as Potential Gene Carriers. Chinese Journal of Chemistry, 2012, 30, 2212-2218.	2.6	2
250	Synthesis and Photophysical Behavior of Pyreneâ€Bearing Cellulose Nanocrystals for Fe ³⁺ Sensing. Macromolecular Chemistry and Physics, 2012, 213, 1612-1617.	1.1	83
251	Effect of stirring conditions on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Journal of Applied Polymer Science, 2012, 126, E470.	1.3	13
252	Interaction between –OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature. Cellulose, 2012, 19, 671-678.	2.4	17

#	Article	IF	Citations
253	Novel regenerated cellulose films prepared by coagulating with water: Structure and properties. Carbohydrate Polymers, 2012, 87, 95-100.	5.1	81
254	Novel highly branched water-soluble heteropolysaccharides as immunopotentiators to inhibit S-180 tumor cell growth in BALB/c mice. Carbohydrate Polymers, 2012, 87, 427-434.	5.1	23
255	Effects of external factors on the arrangement of plate-liked Fe2O3 nanoparticles in cellulose scaffolds. Carbohydrate Polymers, 2012, 87, 830-838.	5.1	11
256	Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydrate Polymers, 2012, 87, 2512-2518.	5.1	57
257	Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. Journal of Hazardous Materials, 2012, 209-210, 218-225.	6.5	301
258	Synthesis and Fluorescent Properties of Carbazoleâ€Substituted Hydroxyethylcelluloses. Macromolecular Chemistry and Physics, 2012, 213, 57-63.	1.1	17
259	Structure and solution properties of cyanoethyl celluloses synthesized in LiOH/urea aqueous solution. Cellulose, 2012, 19, 161-169.	2.4	22
260	Effects of Crystalline Phase and Particle Size on the Properties of Plate-Like Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ Nanoparticles during \hat{I}^3 - to $\hat{I}\pm$ -Phase Transformation. Journal of Physical Chemistry C, 2011, 115, 3602-3611.	1.5	38
261	Fiber-like TiO ₂ Nanomaterials with Different Crystallinity Phases Fabricated via a Green Pathway. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2074-2079.	4.0	54
262	Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. Journal of Materials Chemistry, 2011, 21, 3865.	6.7	192
263	Transparent Cellulose Films with High Gas Barrier Properties Fabricated from Aqueous Alkali/Urea Solutions. Biomacromolecules, 2011, 12, 2766-2771.	2.6	223
264	A Facile Construction of Supramolecular Complex from Polyaniline and Cellulose in Aqueous System. Macromolecules, 2011, 44, 4565-4568.	2.2	71
265	Swelling Behaviors of pH- and Salt-Responsive Cellulose-Based Hydrogels. Macromolecules, 2011, 44, 1642-1648.	2.2	237
266	Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. Chemical Engineering Journal, 2011, 173, 689-697.	6.6	107
267	The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose, 2011, 18, 237-245.	2.4	83
268	In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose, 2011, 18, 663-673.	2.4	47
269	Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose, 2011, 18, 681-688.	2.4	64
270	Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose, 2011, 18, 945-956.	2.4	44

#	Article	IF	Citations
271	Cellulose scaffolds modulated synthesis of Co3O4 nanocrystals: preparation, characterization and properties. Cellulose, 2011, 18, 1273-1283.	2.4	8
272	Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 83, 313-320.	2.5	102
273	Structure and properties of cellulose/poly(<i>N</i> â€isopropylacrylamide) hydrogels prepared by IPN strategy. Polymers for Advanced Technologies, 2011, 22, 1329-1334.	1.6	45
274	Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes. Carbohydrate Polymers, 2011, 86, 171-176.	5.1	46
275	Preparation and properties of polyurethane/benzyl amylose semiâ€interpenetrating networks. Journal of Applied Polymer Science, 2010, 116, 1299-1305.	1.3	0
276	Primarily Industrialized Trial of Novel Fibers Spun from Cellulose Dope in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2010, 49, 11380-11384.	1.8	65
277	Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers, 2010, 82, 122-127.	5.1	239
278	Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A, 2010, 1217, 5922-5929.	1.8	92
279	Investigation into ramie whisker reinforced arylated soy protein composites. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 104-108.	0.4	7
280	An efficient transformation of cellulose into cellulose carbamates assisted by microwave irradiation. Cellulose, 2010, 17, 1115-1125.	2.4	50
281	Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose, 2010, 17, 1159-1169.	2.4	48
282	Effects of Freezing/Thawing Cycles and Cellulose Nanowhiskers on Structure and Properties of Biocompatible Starch/PVA Sponges. Macromolecular Materials and Engineering, 2010, 295, 137-145.	1.7	42
283	Creation of Hydrophobic Materials Fabricated from Soy Protein and Natural Rubber: Surface, Interface, and Properties. Macromolecular Materials and Engineering, 2010, 295, 451-459.	1.7	24
284	Electrospinning of Celluloseâ€Based Fibers From NaOH/Urea Aqueous System. Macromolecular Materials and Engineering, 2010, 295, 695-700.	1.7	49
285	Effects of carbon nanotubes on rheological behavior in cellulose solution dissolved at low temperature. Polymer, 2010, 51, 2748-2754.	1.8	23
286	Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 2010, 46, 92-100.	2.6	668
287	Effect of Salicylic Acid on the Mechanical Properties and Water Resistance of Soy Protein Isolate Films. Polymers and Polymer Composites, 2010, 18, 197-203.	1.0	8
288	Homogenous Carboxymethylation of Cellulose in the New Alkaline Solvent LiOH/Urea Aqueous Solution. Macromolecular Symposia, 2010, 294, 125-132.	0.4	15

#	Article	IF	Citations
289	TiO ₂ Immobilized in Cellulose Matrix for Photocatalytic Degradation of Phenol under Weak UV Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 7806-7811.	1.5	222
290	A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solutions. Polymer Chemistry, 2010, 1, 1662.	1.9	49
291	Advances in Aqueous Cellulose Solvents. ACS Symposium Series, 2010, , 67-89.	0.5	12
292	Structure and mechanical properties of soy protein materials plasticized by Thiodiglycol. Journal of Applied Polymer Science, 2009, 111, 970-977.	1.3	35
293	Properties and Bioapplications of Blended Cellulose and Corn Protein Films. Macromolecular Bioscience, 2009, 9, 849-856.	2.1	36
294	Structure and properties of soy protein films plasticized with hydroxyamine. Journal of Applied Polymer Science, 2009, 111, 1549-1556.	1.3	49
295	Structure and magnetic properties of regenerated cellulose/Fe ₃ O ₄ nanocomposite films. Journal of Applied Polymer Science, 2009, 111, 2477-2484.	1.3	58
296	Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose, 2009, 16, 189-198.	2.4	89
297	Investigation into hemp fiber- and whisker-reinforced soy protein composites. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 313-320.	0.4	20
298	Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1069-1077.	2.4	255
299	Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer, 2009, 50, 5467-5473.	1.8	154
300	Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chemistry, 2009, 11, 177-184.	4.6	217
301	Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution. Biomacromolecules, 2009, 10, 1597-1602.	2.6	236
302	CdS/Regenerated Cellulose Nanocomposite Films for Highly Efficient Photocatalytic H ₂ Production under Visible Light Irradiation. Journal of Physical Chemistry C, 2009, 113, 16021-16026.	1.5	143
303	Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chemistry, 2009, 19, 7771.	6.7	146
304	In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry, 2009, 19, 3538.	6.7	204
305	Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose, 2008, 15, 81-89.	2.4	31
306	Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose, 2008, 15, 779-787.	2.4	200

#	Article	IF	CITATIONS
307	Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromolecular Chemistry and Physics, 2008, 209, 1266-1273.	1.1	206
308	Cellulose Aerogels from Aqueous Alkali Hydroxide–Urea Solution. ChemSusChem, 2008, 1, 149-154.	3.6	327
309	Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions. Carbohydrate Polymers, 2008, 74, 901-906.	5.1	24
310	Effects of Coagulation Conditions on Properties of Multifilament Fibers Based on Dissolution of Cellulose in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2008, 47, 8676-8683.	1.8	31
311	Structure and Properties of Cellulose/Fe ₂ O ₃ Nanocomposite Fibers Spun via an Effective Pathway. Journal of Physical Chemistry C, 2008, 112, 4538-4544.	1.5	103
312	Fiberlike Fe ₂ O ₃ Macroporous Nanomaterials Fabricated by Calcinating Regenerate Cellulose Composite Fibers. Chemistry of Materials, 2008, 20, 3623-3628.	3.2	127
313	Homogeneous Quaternization of Cellulose in NaOH/Urea Aqueous Solutions as Gene Carriers. Biomacromolecules, 2008, 9, 2259-2264.	2.6	244
314	Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures. Macromolecules, 2008, 41, 9345-9351.	2.2	368
315	Structure and Properties of Soy Protein Plastics with ε-Caprolactone/Glycerol as Binary Plasticizers. Industrial & Engineering Chemistry Research, 2008, 47, 9389-9395.	1.8	25
316	Structure Study of Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous Solutions. Biomacromolecules, 2007, 8, 1918-1926.	2.6	121
317	Molecular weight and arm number of a star-shaped styrene–butadiene block copolymer synthesized on a pilot-vessel scale. Journal of Applied Polymer Science, 2007, 103, 1853-1859.	1.3	3
318	Molecular weight and chain conformation of amylopectin from rice starch. Journal of Applied Polymer Science, 2007, 104, 3124-3128.	1.3	19
319	Influence of different amides as plasticizer on the properties of soy protein plastics. Journal of Applied Polymer Science, 2007, 106, 130-137.	1.3	29
320	Fabrication and Properties of Cellulose Hydrated Membrane with Unique Structure. Macromolecular Chemistry and Physics, 2007, 208, 594-602.	1.1	64
321	Inclusion Complex Formation of Cellulose in NaOH–Thiourea Aqueous System at Low Temperature. Macromolecular Chemistry and Physics, 2007, 208, 2359-2366.	1.1	62
322	A New Network Composite Material Based on Soy Dreg Modified with Polyurethane Prepolymer. Macromolecular Materials and Engineering, 2007, 292, 484-494.	1.7	12
323	Hydrogels Prepared from Unsubstituted Cellulose in NaOH/Urea Aqueous Solution. Macromolecular Bioscience, 2007, 7, 804-809.	2.1	168
324	Electrically induced linear locomotion of polymer gel in air. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1187-1197.	2.4	7

#	Article	IF	Citations
325	Fractionation and characterization of a protein–polysaccharide complex from <i>Pleurotus tuberregium</i> sclerotia. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2546-2554.	2.4	10
326	Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose, 2007, 14, 205-215.	2.4	68
327	Unique Gelation Behavior of Cellulose in NaOH/Urea Aqueous Solution. Biomacromolecules, 2006, 7, 183-189.	2.6	419
328	Structure and Properties of Cellulose Films Coated with Polyurethane/Benzyl Starch Semi-IPN Coating. Industrial & Engineering Chemistry Research, 2006, 45, 4193-4199.	1.8	21
329	Dilute solution properties of cellulose in LiOH/urea aqueous system. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3093-3101.	2.4	201
330	Structure and physical properties of methylcellulose synthesized in NaOH/urea solution. Polymer Bulletin, 2006, 56, 349-357.	1.7	30
331	Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles. Journal of Applied Polymer Science, 2006, 101, 3600-3608.	1.3	25
332	Styrene-butadiene-styrene/montmorillonite nanocomposites synthesized by anionic polymerization. Journal of Applied Polymer Science, 2006, 99, 2273-2278.	1.3	27
333	Effects of reaction and cure temperatures on morphology and properties of poly(ester-urethane). Journal of Applied Polymer Science, 2006, 100, 708-714.	1.3	11
334	Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. Journal of Applied Polymer Science, 2006, 101, 334-341.	1.3	61
335	Toughened composites prepared from castor oil based polyurethane and soy dreg by a one-step reactive extrusion process. Journal of Applied Polymer Science, 2006, 101, 953-960.	1.3	9
336	Effects of arm number on the properties of transparent elastomers prepared from styrene–butadiene block copolymer. Journal of Applied Polymer Science, 2006, 102, 729-736.	1.3	3
337	Preparation and characterization of anionically polymerized butadiene-isoprene copolymer/clay nanocomposites. Journal of Applied Polymer Science, 2006, 102, 1167-1172.	1.3	10
338	Homogenous Synthesis of Hydroxyethylcellulose in NaOH/Urea Aqueous Solution. Macromolecular Bioscience, 2006, 6, 84-89.	2.1	45
339	Effects of Temperature on Morphology and Properties of Films Prepared from Poly(ester-urethane) and Nitrochitosan. Macromolecular Materials and Engineering, 2006, 291, 148-154.	1.7	7
340	Structure and Properties of Soy Protein Plastics Plasticized with Acetamide. Macromolecular Materials and Engineering, 2006, 291, 820-828.	1.7	74
341	Morphology and Crystalline Structure of Poly(É)-Caprolactone) Nanofiber via Porous Aluminium Oxide Template. Macromolecular Materials and Engineering, 2006, 291, 1098-1103.	1.7	12
342	A Rapid Process for Producing Cellulose Multi-Filament Fibers from a NaOH/Thiourea Solvent System. Macromolecular Rapid Communications, 2006, 27, 1495-1500.	2.0	55

#	Article	IF	Citations
343	Synthesis and Alignment of Iron Oxide Nanoparticles in a Regenerated Cellulose Film. Macromolecular Rapid Communications, 2006, 27, 2084-2089.	2.0	44
344	Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydrate Research, 2005, 340, 1515-1521.	1.1	273
345	Preparation and Properties of Alginate/Waterâ€Soluble Chitin Blend Fibers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 723-732.	1.2	21
346	Mechanical properties and biodegradability of crosslinked soy protein isolate/waterborne polyurethane composites. Journal of Applied Polymer Science, 2005, 95, 465-473.	1.3	28
347	Effects of molecular weight and arm number on properties of star-shape styrene-butadiene-styrene triblock copolymer. Journal of Applied Polymer Science, 2005, 95, 832-840.	1.3	15
348	Molecular architectures of four-arm star-shaped styrene-butadiene copolymer. Journal of Applied Polymer Science, 2005, 96, 961-965.	1.3	2
349	Preparation and characterization of alginate/gelatin blend fibers. Journal of Applied Polymer Science, 2005, 96, 1625-1629.	1.3	108
350	Urea/NaOH aqueous solution as new solvent of aeromonas gum. Journal of Applied Polymer Science, 2005, 97, 1710-1713.	1.3	2
351	Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions. Macromolecular Bioscience, 2005, 5, 539-548.	2.1	844
352	Effect of the Addition of Toluene on the Structure and Properties of Styrene-Isoprene-Butadiene Rubber/Montmorillonite Nanocomposites. Macromolecular Materials and Engineering, 2005, 290, 430-437.	1.7	14
353	Structure and Properties of CdS/Regenerated Cellulose Nanocomposites. Macromolecular Materials and Engineering, 2005, 290, 1017-1024.	1.7	53
354	Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polymer Bulletin, 2005, 53, 243-248.	1.7	40
355	Miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 603-615.	2.4	18
356	Preparation and characterization of soy protein plastics plasticized with waterborne polyurethane. Polymer International, 2005, 54, 233-239.	1.6	41
357	Preparation and Characterization of Alginate/Poly(Vinyl Alcohol) Blend Fibers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 41-50.	1.2	15
358	Effect of Molecular Mass on Antitumor Activity of Heteropolysaccharide fromPoria cocos. Bioscience, Biotechnology and Biochemistry, 2005, 69, 631-634.	0.6	18
359	Chain Conformation of an Alkaliâ€Soluble Polysaccharide from Mycelium of Ganoderma tsugae. Journal of Macromolecular Science - Physics, 2005, 44, 445-453.	0.4	0
360	Adsorption of Cd2+and Cu2+on Ionâ€Exchange Beads from Cellulose/Alginic Acid Blend. Separation Science and Technology, 2005, 39, 1203-1219.	1.3	9

#	Article	IF	Citations
361	Transport of Glucose and Poly(ethylene glycol)s in Agarose Gels Studied by the Refractive Index Method. Macromolecules, 2005, 38, 5236-5242.	2.2	35
362	Effects of Coagulation Conditions on the Properties of Regenerated Cellulose Films Prepared in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2005, 44, 522-529.	1.8	102
363	Behavior of cellulose in NaOH/Urea aqueous solution characterized by light scattering and viscometry. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 347-353.	2.4	88
364	Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 367-373.	2.4	77
365	Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. Journal of Polymer Science Part A, 2004, 42, 5911-5920.	2.5	69
366	Properties of crosslinked casein/waterborne polyurethane composites. Journal of Applied Polymer Science, 2004, 91, 332-338.	1.3	33
367	Miscibility and properties of blend materials from waterborne polyurethane and carboxymethyl konjac glucomannan. Journal of Applied Polymer Science, 2004, 92, 77-83.	1.3	16
368	Preparation and release behavior of carboxymethylated chitosan/alginate microspheres encapsulating bovine serum albumin. Journal of Applied Polymer Science, 2004, 92, 878-882.	1.3	67
369	Preparation and properties of water-resistant soy dreg/benzyl konjac glucomannan composite plastics. Journal of Applied Polymer Science, 2004, 91, 2061-2061.	1.3	3
370	Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. Journal of Applied Polymer Science, 2004, 93, 624-629.	1.3	44
371	Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. Journal of Applied Polymer Science, 2004, 94, 684-691.	1.3	55
372	Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution. Journal of Applied Polymer Science, 2004, 94, 748-757.	1.3	30
373	Novel Fibers Prepared from Cellulose in NaOH/Urea Aqueous Solution. Macromolecular Rapid Communications, 2004, 25, 1558-1562.	2.0	188
374	Effect of the Particle Size in Dispersions on the Properties of Waterborne Polyurethane/Casein Composites. Industrial & Engineering Chemistry Research, 2004, 43, 3336-3342.	1.8	36
375	Morphology and Properties of Soy Protein Isolate Thermoplastics Reinforced with Chitin Whiskers. Biomacromolecules, 2004, 5, 1046-1051.	2.6	333
376	Ways of strengthening biodegradable soy-dreg plastics. Journal of Applied Polymer Science, 2003, 88, 422-427.	1.3	35
377	Effects of NCO/OH molar ratio on miscibility and properties of semiinterpenetrating polymer networks from polyurethane and benzyl konjac glucomannan. Journal of Applied Polymer Science, 2003, 88, 1304-1310.	1.3	2
378	Effects of lignin as a filler on properties of soy protein plastics. II. Alkaline lignin. Journal of Applied Polymer Science, 2003, 88, 3291-3297.	1.3	53

#	Article	IF	Citations
379	Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. Journal of Applied Polymer Science, 2003, 88, 3284-3290.	1.3	70
380	Soy protein-lignosulphonate plastics strengthened with cellulose. Journal of Applied Polymer Science, 2003, 89, 1685-1689.	1.3	16
381	Properties of regenerated cellulose films plasticized with ?-monoglycerides. Journal of Applied Polymer Science, 2003, 89, 3500-3505.	1.3	33
382	Miscibility and properties of blend membranes of waterborne polyurethane and carboxymethylchitin. Journal of Applied Polymer Science, 2003, 90, 1233-1241.	1.3	20
383	Study of blend films from chitosan and hydroxypropyl guar gum. Journal of Applied Polymer Science, 2003, 90, 1991-1995.	1.3	22
384	Synthesis and characterization of poly(ester urethane)/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 2224-2228.	1.3	3
385	Effect of the synthesis route on the structure and properties of polyurethane/nitrokonjac glucomannan semi-interpenetrating polymer networks. Journal of Applied Polymer Science, 2003, 90, 1948-1954.	1.3	7
386	Preparation and properties of water-resistant soy dreg/benzyl konjac glucomannan composite plastics. Journal of Applied Polymer Science, 2003, 90, 3790-3796.	1.3	27
387	Structure-properties relationship of starch/waterborne polyurethane composites. Journal of Applied Polymer Science, 2003, 90, 3325-3332.	1.3	38
388	Structure and Properties of Composites Compression-Molded from Polyurethane Prepolymer and Various Soy Products. Industrial & Engineering Chemistry Research, 2003, 42, 6786-6794.	1.8	47
389	Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR. Polymer Journal, 2002, 34, 443-449.	1.3	52
390	Interfacial Structure and Properties of Regenerated Cellulose Films Coated with Superthin Polyurethane/Benzoyl Konjac Glucomannan Coating. Industrial & Engineering Chemistry Research, 2002, 41, 1234-1241.	1.8	20
391	Regenerated cellulose films from NaOH/urea aqueous solution by coagulating with sulfuric acid. Journal of Macromolecular Science - Physics, 2002, 41, 1-15.	0.4	30
392	Investigation into Molecular Diffusion in Hydrogels Using the Refractive Index Method. Macromolecular Rapid Communications, 2002, 23, 968-971.	2.0	4
393	Improvement of physical properties of crosslinked alginate and carboxymethyl konjac glucomannan blend films. Journal of Applied Polymer Science, 2002, 84, 2554-2560.	1.3	40
394	Cellulose/chitin films blended in NaOH/urea aqueous solution. Journal of Applied Polymer Science, 2002, 86, 1679-1683.	1.3	32
395	Morphology and properties of cellulose/chitin blends membranes from NaOH/thiourea aqueous solution. Journal of Applied Polymer Science, 2002, 86, 2025-2032.	1.3	32
396	Structure and properties of regenerated cellulose films coated with polyurethane-nitrolignin graft-IPNs coating. Journal of Applied Polymer Science, 2002, 86, 1799-1806.	1.3	10

#	Article	IF	Citations
397	Study on physical properties of blend films from gelatin and polyacrylamide solutions. Journal of Applied Polymer Science, 2002, 83, 949-955.	1.3	20
398	Dilute-solution behavior of aeromonas gum, a heteropolysaccharide. Polymer Bulletin, 2002, 48, 491-498.	1.7	10
399	Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1521-1529.	2.4	274
400	Molecular weight and aggregation of Aeromonas gum treated with dimethyl sulfoxide in aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2269-2276.	2.4	5
401	Structure and Properties of Regenerated Cellulose Films Prepared from Cotton Linters in NaOH/Urea Aqueous Solution. Industrial & Engineering Chemistry Research, 2001, 40, 5923-5928.	1.8	199
402	BLEND FILMS FROM CHITOSAN AND POLYACRYLAMIDE SOLUTIONS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 761-771.	1.2	14
403	Preparation and Characterization of Thermoplastic Starch Mixed with Waterborne Polyurethane. Industrial & Digineering Chemistry Research, 2001, 40, 558-564.	1.8	35
404	Triple Helix of \hat{I}^2 -D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering. Polymer Journal, 2001, 33, 317-321.	1.3	77
405	Molecular Weight Effects on Properties of Polyurethane/Nitrokonjac Glucomannan Semiinterpenetrating Polymer Networks. Macromolecules, 2001, 34, 2202-2207.	2.2	66
406	Properties and Structure of Soy Protein Isolateâ^Ethylene Glycol Sheets Obtained by Compression Molding. Industrial & Engineering Chemistry Research, 2001, 40, 1879-1883.	1.8	66
407	SOLUTION PROPERTIES OF PACHYMAN FROM PORIA COCOS MYCELIA IN DIMETHYL SULFOXIDE. Journal of Macromolecular Science - Physics, 2001, 40, 147-156.	0.4	10
408	Chemical structure and chain conformation of the water-insoluble glucan isolated from Pleurotus tuber-regium. Biopolymers, 2001, 59, 457-464.	1.2	43
409	Characterization of konjac glucomannan-gelatin blend films. Journal of Applied Polymer Science, 2001, 79, 1596-1602.	1.3	47
410	Structure and properties of casting films blended with starch and waterborne polyurethane. Journal of Applied Polymer Science, 2001, 79, 2006-2013.	1.3	51
411	Preparation and characterization of konjac glucomannan and sodium carboxymethylcellulose blend films. Journal of Applied Polymer Science, 2001, 80, 26-31.	1.3	38
412	Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. Journal of Applied Polymer Science, 2001, 80, 1213-1219.	1.3	55
413	Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. Journal of Applied Polymer Science, 2001, 80, 2558-2565.	1.3	228
414	Preparation and physical properties of konjac glucomannan-polyacrylamide blend films. Journal of Applied Polymer Science, 2001, 81, 882-888.	1.3	22

#	Article	IF	CITATIONS
415	Semi-interpenetrating polymer networks from castor oil-based polyurethane and nitrokonjac glucomannan. Journal of Applied Polymer Science, 2001, 81, 2076-2083.	1.3	21
416	Effects of hard-segment compositions on properties of polyurethane-nitrolignin films. Journal of Applied Polymer Science, 2001, 81, 3251-3259.	1.3	32
417	Cellulose/casein blend membranes from NaOH/urea solution. Journal of Applied Polymer Science, 2001, 81, 3260-3267.	1.3	32
418	Structure and control release of chitosan/carboxymethyl cellulose microcapsules. Journal of Applied Polymer Science, 2001, 82, 584-592.	1.3	48
419	Structure and properties of semiinterpenetrating polymer networks based on polyurethane and nitrochitosan. Journal of Applied Polymer Science, 2001, 82, 3109-3117.	1.3	15
420	Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. Journal of Applied Polymer Science, 2001, 82, 3373-3380.	1.3	34
421	Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 451-458.	2.4	54
422	Synthesis and properties of O-2-[2-(2-methoxyethoxy)ethoxy] acetyl cellulose. Journal of Polymer Science Part A, 2001, 39, 376-382.	2.5	9
423	BLEND FILMS FROM SODIUM ALGINATE AND GELATIN SOLUTIONS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 317-328.	1.2	83
424	WATER-RESISTANT CELLULOSE FILMS COATED WITH POLYURETHANE-ACRYLAMIDE GRAFTED KONJAC GLUCOMANNAN. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 33-42.	1.2	9
425	Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 451-458.	2.4	1
426	Characterization of poly(vinylpyrrolidone)-konjac glucomannan blend films. Journal of Applied Polymer Science, 2001, 81, 1049-1055.	1.3	17
427	Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate. Journal of Applied Polymer Science, 2001, 82, 3373-3380.	1.3	1
428	CHARACTERIZATION OF POLY(VINYL ALCOHOL)-KONJAC GLUCOMANNAN BLEND FILMS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 1009-1021.	1.2	19
429	Molecular size and aggregation behavior of Erwinia gum in aqueous solution. Journal of Applied Polymer Science, 2000, 75, 1083-1088.	1.3	3
430	Blend films from chitosan and konjac glucomannan solutions. Journal of Applied Polymer Science, 2000, 76, 509-515.	1.3	96
431	Blend membranes from carboxymethylated chitosan/alginate in aqueous solution. Journal of Applied Polymer Science, 2000, 77, 610-616.	1.3	61
432	Blend films from konjac glucomannan and sodium alginate solutions and their preservative effect. Journal of Applied Polymer Science, 2000, 77, 617-626.	1.3	42

#	Article	IF	CITATIONS
433	Effects of the thermal history and concentration on the aggregation of Erwinia gum in an aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1352-1358.	2.4	6
434	PREPARATION AND PHYSICAL PROPERTIES OF BLEND FILMS FROM SODIUM ALGINATE AND POLYACRYLAMIDE SOLUTIONS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 1663-1675.	1.2	42
435	Phase transition of thermosensitive amphiphilic cellulose esters bearing olig(oxyethylene)s. Polymer Bulletin, 2000, 45, 381-388.	1.7	10
436	Solubility of Cellulose in NaOH/Urea Aqueous Solution. Polymer Journal, 2000, 32, 866-870.	1.3	233
437	Blend membranes from carboxymethylated chitosan/alginate in aqueous solution. Journal of Applied Polymer Science, 2000, 77, 610-616.	1.3	1
438	Miscibility of blends of Aeromonas gum or Erwinia gum with other polysaccharides. Journal of Applied Polymer Science, 1999, 73, 1387-1395.	1.3	0
439	Effects of molecular weight of nitrocellulose on structure and properties of polyurethane/nitrocellulose IPNs. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1623-1631.	2.4	40
440	Formation and structure of pachyman aggregates in dimethyl sulfoxide containing water. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3201-3207.	2.4	14
441	Biodegradability of Regenerated Cellulose Films Coated with Polyurethane/Natural Polymers Interpenetrating Polymer Networks. Industrial & Engineering Chemistry Research, 1999, 38, 4284-4289.	1.8	54
442	Aggregation of Aeromonas Gum in Aqueous Solution. Polymer Journal, 1999, 31, 150-153.	1.3	15
443	Properties and interfacial bonding of regenerated cellulose films coated with polyurethane-chitosan IPN coating. Journal of Applied Polymer Science, 1998, 68, 1313-1319.	1.3	20
444	Phase transition of 2,3- O -methylcellulose. Polymer Bulletin, 1998, 40, 741-747.	1.7	17
445	Viscosity behavior and chain conformation of a (1â†'3)-α-glucan from Ganoderma lucidum. Polymer Bulletin, 1998, 41, 471-478.	1.7	24
446	Synthesis and characterization of polyurethane-chitosan interpenetrating polymer networks. Journal of Applied Polymer Science, 1998, 68, 1321-1329.	1.3	37
447	Preparation and Properties of Polyurethane/Elaeostearin Interpenetrating Polymer Networks Coating to Regenerated Cellulose Films. Industrial & Engineering Chemistry Research, 1998, 37, 2681-2686.	1.8	19
448	Chemical Structure of the Water-Insoluble Polysaccharide Isolated from the Fruiting Body of Ganoderma lucidum. Polymer Journal, 1998, 30, 838-842.	1.3	41
449	Morphology and Amorphous Structure of Blend Membranes from Cellulose and Casein Recovered from Its Cuprammonium Solution. Polymer Journal, 1997, 29, 316-332.	1.3	11
450	Water-Resistant Film from Polyurethane/Nitrocellulose Coating to Regenerated Cellulose. Industrial & Lamp; Engineering Chemistry Research, 1997, 36, 2651-2656.	1.8	28

MENG HE

#	Article	IF	CITATIONS
451	Interfacial structure and properties of polyurethane/poly(methylacrylate-co-styrene) coating to regenerated cellulose film. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2495-2501.	2.4	9
452	Biodegradability of Regenerated Cellulose Films in Soil. Industrial & Engineering Chemistry Research, 1996, 35, 4682-4685.	1.8	55
453	Double-stranded helix of xanthan: Rigidity in 0.01M aqueous sodium chloride containing 0.01 N hydrochloric acid. Biopolymers, 1987, 26, 333-341.	1.2	41
454	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
455	Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties. Journal of Materials Chemistry C, 0, , .	2.7	28