Andrew S Neish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5788858/publications.pdf

Version: 2024-02-01

115 11,099 49 88 g-index

156 156 156 156 15076

all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Transcriptional regulation of endothelial cell adhesion molecules: NFâ€PB and cytokineâ€inducible enhancers. FASEB Journal, 1995, 9, 899-909.	0.2	1,614
2	Microbes in Gastrointestinal Health and Disease. Gastroenterology, 2009, 136, 65-80.	0.6	1,150
3	Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Reports Medicine, 2020, 1, 100040.	3.3	421
4	Nox Enzymes and New Thinking on Reactive Oxygen: A Double-Edged Sword Revisited. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 119-145.	9.6	389
5	Deletion of TLR5 results in spontaneous colitis in mice. Journal of Clinical Investigation, 2007, 117, 3909-21.	3.9	349
6	The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity, 1995, 2, 493-506.	6.6	341
7	Symbiotic lactobacilli stimulate gut epithelial proliferation (i) via (i) Nox-mediated generation of reactive oxygen species. EMBO Journal, 2013, 32, 3017-3028.	3.5	315
8	Expression Profiling of Renal Epithelial Neoplasms. American Journal of Pathology, 2001, 158, 1639-1651.	1.9	300
9	Cutting Edge: <i>Salmonella</i> AvrA Effector Inhibits the Key Proinflammatory, Anti-Apoptotic NF-κB Pathway. Journal of Immunology, 2002, 169, 2846-2850.	0.4	260
10	Annexin Alâ€"containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. Journal of Clinical Investigation, 2015, 125, 1215-1227.	3.9	257
11	Lipoxin A4 Analogs Attenuate Induction of Intestinal Epithelial Proinflammatory Gene Expression and Reduce the Severity of Dextran Sodium Sulfate-Induced Colitis. Journal of Immunology, 2002, 168, 5260-5267.	0.4	245
12	Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. Journal of Clinical Investigation, 2013, 123, 443-454.	3.9	244
13	Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO Journal, 2007, 26, 4457-4466.	3.5	241
14	Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology, 2016, 151, 733-746.e12.	0.6	235
15	Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host and Microbe, 2008, 3, 233-244.	5.1	234
16	Flagellin Is the Major Proinflammatory Determinant of Enteropathogenic <i>Salmonella</i> . Journal of Immunology, 2003, 171, 3668-3674.	0.4	215
17	Salmonella typhimurium induces epithelial IL-8 expression via Ca2+-mediated activation of the NF-κB pathway. Journal of Clinical Investigation, 2000, 105, 79-92.	3.9	203
18	Lactobacilli Modulate Epithelial Cytoprotection through the Nrf2 Pathway. Cell Reports, 2015, 12, 1217-1225.	2.9	183

#	Article	IF	CITATIONS
19	The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nature Microbiology, 2016, 1, 15021.	5.9	182
20	Flagellin Treatment Protects against Chemicals, Bacteria, Viruses, and Radiation. Journal of Immunology, 2008, 180, 8280-8285.	0.4	173
21	Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radical Biology and Medicine, 2009, 47, 1205-1211.	1.3	162
22	Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. Cell Metabolism, 2020, 31, 956-968.e5.	7.2	157
23	Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8803-8808.	3.3	144
24	Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 597-617.	8.2	138
25	The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes and Infection, 2002, 4, 309-317.	1.0	134
26	Redox signaling mediated by the gut microbiota. Free Radical Biology and Medicine, 2017, 105, 41-47.	1.3	132
27	TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. American Journal of Physiology - Renal Physiology, 2003, 285, G282-G290.	1.6	126
28	Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. American Journal of Physiology - Renal Physiology, 2006, 290, G96-G108.	1.6	117
29	The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation. Journal of Immunology, 2009, 182, 538-546.	0.4	114
30	Cutting Edge: Bacterial Modulation of Epithelial Signaling via Changes in Neddylation of Cullin-1. Journal of Immunology, 2005, 175, 4194-4198.	0.4	113
31	Beta Defensin-1, Parvalbumin, and Vimentin. American Journal of Surgical Pathology, 2003, 27, 199-205.	2.1	111
32	Flagellin Suppresses Epithelial Apoptosis and Limits Disease during Enteric Infection. American Journal of Pathology, 2006, 169, 1686-1700.	1.9	109
33	The Probiotic Lactobacillus GG may Augment Intestinal Host Defense by Regulating Apoptosis and Promoting Cytoprotective Responses in the Developing Murine Gut. Pediatric Research, 2008, 64, 511-516.	1.1	105
34	Enteric Commensal Bacteria Induce Extracellular Signal-regulated Kinase Pathway Signaling via Formyl Peptide Receptor-dependent Redox Modulation of Dual Specific Phosphatase 3. Journal of Biological Chemistry, 2011, 286, 38448-38455.	1.6	101
35	Daratumumab in multiple myeloma. Cancer, 2019, 125, 2364-2382.	2.0	100
36	Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers, 2018, 6, 1539595.	1.6	94

3

#	Article	IF	Citations
37	Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. Journal of Controlled Release, 2019, 295, 174-186.	4.8	82
38	Epithelial Adhesion Mediated by Pilin SpaC Is Required for Lactobacillus rhamnosus GG-Induced Cellular Responses. Applied and Environmental Microbiology, 2014, 80, 5068-5077.	1.4	78
39	<i>Cosmc</i> is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14787-14792.	3.3	77
40	Enteropathogenic <i>E. coli</i> nonâ€LEE encoded effectors NleH1 and NleH2 attenuate NFâ€PB activation. Molecular Microbiology, 2010, 78, 1232-1245.	1,2	76
41	Commensal-Epithelial Signaling Mediated via Formyl Peptide Receptors. American Journal of Pathology, 2010, 177, 2782-2790.	1.9	75
42	The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo. Cellular Microbiology, 2012, 14, 28-39.	1.1	69
43	Redox signaling mediated by the gut microbiota. Free Radical Research, 2013, 47, 950-957.	1.5	69
44	Initiation of Parkinson's disease from gut to brain by δ-secretase. Cell Research, 2020, 30, 70-87.	5.7	69
45	Mucosal Immunity and the Microbiome. Annals of the American Thoracic Society, 2014, 11, S28-S32.	1.5	64
46	Gut Microbiota in Intestinal and Liver Disease. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 251-275.	9.6	64
47	Redox signaling mediates symbiosis between the gut microbiota and the intestine. Gut Microbes, 2014, 5, 250-253.	4.3	61
48	Interactions Between Commensal Bacteria and Enteric Neurons, via FPR1 Induction of ROS, Increase Gastrointestinal Motility inÂMice. Gastroenterology, 2019, 157, 179-192.e2.	0.6	58
49	Flagellin administration protects gut mucosal tissue from irradiation-induced apoptosis via MKP-7 activity. Gut, 2011, 60, 648-657.	6.1	56
50	Toll-Like Receptor 5-Deficient Mice Have Dysregulated Intestinal Gene Expression and Nonspecific Resistance to Salmonella -Induced Typhoid-Like Disease. Infection and Immunity, 2008, 76, 1276-1281.	1.0	51
51	New insights into probiotic mechanisms. Gut Microbes, 2013, 4, 94-100.	4.3	42
52	Molecular Aspects of Intestinal Epithelial Cell-bacterial Interactions That Determine the Development of Intestinal Inflammation. Inflammatory Bowel Diseases, 2004, 10, 159-168.	0.9	39
53	Recombinant SARS-CoV-2 genomes circulated at low levels over the first year of the pandemic. Virus Evolution, 2021, 7, .	2.2	38
54	Microbial metabolite delta-valerobetaine is a diet-dependent obesogen. Nature Metabolism, 2021, 3, 1694-1705.	5.1	36

#	Article	IF	Citations
55	Formyl peptide receptor 2 regulates monocyte recruitment to promote intestinal mucosal wound repair. FASEB Journal, 2019, 33, 13632-13643.	0.2	33
56	Bacterial Inhibition of Eukaryotic Pro-Inflammatory Pathways. Immunologic Research, 2004, 29, 175-186.	1.3	31
57	Microbial-induced immunomodulation by targeting the NF-l $^{\rm e}$ B system. Trends in Microbiology, 2011, 19, 596-605.	3.5	29
58	Recognition of bacterial pathogens and mucosal immunity. Cellular Microbiology, 2011, 13, 670-676.	1.1	29
59	Commensal microbiota induced redox signaling activates proliferative signals in the intestinal stem cell microenvironment. Development (Cambridge), 2019, 146, .	1.2	26
60	Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013. Microbiome, 2014, 2,	4.9	25
61	Bioengineering Bacterially Derived Immunomodulants: A Therapeutic Approach to Inflammatory Bowel Disease. ACS Nano, 2017, 11, 9650-9662.	7.3	24
62	Comparison of Antibody Class-Specific SARS-CoV-2 Serologies for the Diagnosis of Acute COVID-19. Journal of Clinical Microbiology, 2021, 59, .	1.8	23
63	Proteomic analysis of microbial induced redox-dependent intestinal signaling. Redox Biology, 2019, 20, 526-532.	3.9	21
64	Electroporation-mediated delivery of molecules to model intestinal epithelia. International Journal of Pharmaceutics, 2004, 270, 127-138.	2.6	17
65	Are We Forgetting About IgA? A Reâ€examination of Coronavirus Disease 2019 Convalescent Plasma. Transfusion, 2021, 61, 1740-1748.	0.8	16
66	Galectin-9 Is a Novel Regulator of Epithelial Restitution. American Journal of Pathology, 2020, 190, 1657-1666.	1.9	16
67	TLRS in the Gut. II. Flagellin-induced inflammation and antiapoptosis. American Journal of Physiology - Renal Physiology, 2007, 292, G462-G466.	1.6	15
68	NF-κB and Mucosal Homeostasis. Current Topics in Microbiology and Immunology, 2010, 349, 145-158.	0.7	15
69	Interaction of bacteria and bacterial toxins with intestinal epithelial cells. Current Gastroenterology Reports, 2001, 3, 392-398.	1.1	14
70	Plasmid DNA and siRNA transfection of intestinal epithelial monolayers by electroporation. International Journal of Pharmaceutics, 2006, 315, 122-133.	2.6	14
71	Serum Amyloid A1 Is an Epithelial Prorestitutive Factor. American Journal of Pathology, 2018, 188, 937-949.	1.9	14
72	Neutrophil-Derived Reactive Oxygen Orchestrates Epithelial Cell Signaling Events during Intestinal Repair. American Journal of Pathology, 2019, 189, 2221-2232.	1.9	13

#	Article	IF	Citations
73	Proline-Rich Acidic Protein 1 (PRAP1) Protects the Gastrointestinal Epithelium From Irradiation-Induced Apoptosis. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 713-727.	2.3	12
74	A Human Microbiota-Associated Murine Model for Assessing the Impact of the Vaginal Microbiota on Pregnancy Outcomes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 570025.	1.8	9
75	Redox control of Cas phosphorylation requires Abl kinase in regulation of intestinal epithelial cell spreading and migration. American Journal of Physiology - Renal Physiology, 2016, 311, G458-G465.	1.6	7
76	Wild-type and mutant AvrAâ^'Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation. Poultry Science, 2016, 95, 354-363.	1.5	7
77	Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine. Pediatric Research, 2017, 82, 362-369.	1.1	5
78	Mission, Organization, and Future Direction of the Serological Sciences Network for COVID-19 (SeroNet) Epidemiologic Cohort Studies. Open Forum Infectious Diseases, 2022, 9, .	0.4	5
79	Intracolonic Neuropeptide Y Y1 Receptor Inhibition Attenuates Intestinal Inflammation in Murine Colitis and Cytokine Release in IBD Biopsies. Inflammatory Bowel Diseases, 2022, 28, 502-513.	0.9	4
80	Preimmune Recognition and Response to Microbial Metabolites. Physiology, 2021, 36, 94-101.	1.6	3
81	Molecular Analysis of Microbiota-Host Cross-Talk in the Intestine. Bioscience and Microflora, 2010, 29, 1-10.	0.5	3
82	The Microbiota and Colonic Neoplasia. Journal of Clinical Gastroenterology, 2011, 45, 571.	1.1	2
83	Hydro-Cy3-Mediated Detection of Reactive Oxygen Species In Vitro and In Vivo. Methods in Molecular Biology, 2019, 1982, 329-337.	0.4	2
84	The need for new test verification and regulatory support for innovative diagnostics. Nature Biotechnology, 2021, 39, 1060-1062.	9.4	2
85	Commensal Lactobacillus modulate ROSâ€dependent cytoprotective gene expression in intestinal epithelia. FASEB Journal, 2013, 27, 131.11.	0.2	2
86	Microbial Interference with Host Inflammatory Responses., 0,, 175-190.		2
87	Regulation of the Hepatic Antioxidant Response by the Probiotic Lactobacillus rhamnosus GG. FASEB Journal, 2019, 33, 369.5.	0.2	2
88	Salmonella AvrA Modulates Innate Immune Signaling: A Mechanistic Analysis in Drosophila. FASEB Journal, 2007, 21, A132.	0.2	1
89	Symbiotic Lactobacilli Stimulate Metazoan Gut Proliferation via Induction of Reactive Oxygen Species by Nox1. FASEB Journal, 2013, 27, 131.4.	0.2	1
90	Imaging the Gut with "CLARITY". Journal of Visualized Experiments, 2021, , .	0.2	0

#	Article	IF	CITATIONS
91	Commensal bacteria stimulate rapid phosphorylation of epithelial focal adhesion kinase that results in host cytoskeletal rearrangements. FASEB Journal, 2007, 21, A766.	0.2	О
92	Enteric commensal bacteria elicit epithelial ROS and modulate signaling via repression of cullinâ€dependent ubiquitination. FASEB Journal, 2007, 21, A132.	0.2	0
93	Identification of molecular antiâ€inflammatory mechanisms of adenosine: Cullinâ€1 deneddylation during hypoxic preconditioning (HPC). FASEB Journal, 2007, 21, A131.	0.2	0
94	Modulation of host apoptotic signaling by the Salmonella effector protein AvrA. FASEB Journal, 2008, 22, 320.5.	0.2	0
95	Commensal bacteria promote intestinal epithelial restitution by regulating FAK phosphorylation. FASEB Journal, 2008, 22, 464.10.	0.2	0
96	LACTOBACILLUS RHAMNOSUS SUPPRESSES EPITHELIAL APOPTOSIS BY UPREGULATING CYTOPROTECTIVE GENES IN THE IMMATURE GUT. FASEB Journal, 2008, 22, 899.14.	0.2	0
97	Salmonella evades host innate immunity via AvrA mediated inhibition of cytokine production and proâ€apoptotic pathways. FASEB Journal, 2008, 22, 899.13.	0.2	0
98	A Drosophila genetic screen for the discovery of novel NFâ€kB and apoptotic regulatory genes. FASEB Journal, 2008, 22, 899.17.	0.2	0
99	Salmonella enterica serovar Typhimurium flagellin modulates CD4+ T cell apoptosis in Peyer's patches and spleen. FASEB Journal, 2009, 23, 570.19.	0.2	0
100	Lactobacillus rhamnosus prevents inflammatory signaling in immature murine intestines via generation of reactive oxygen species. FASEB Journal, 2009, 23, .	0.2	0
101	Formylated Peptide Receptor Mediated Commensalâ€Epithelial Signaling. FASEB Journal, 2009, 23, 570.18.	0.2	0
102	Salmonella effector AvrA promotes cellular proliferation. FASEB Journal, 2009, 23, 45.7.	0.2	0
103	Indigenous microbiota influence epithelial homeostasis through the activation of Reactive Oxygen Species. FASEB Journal, 2010, 24, 117.2.	0.2	0
104	Salmonella effector protein AvrA influences bacterial dissemination and persistence within the host. FASEB Journal, 2010, 24, 1030.19.	0.2	0
105	Commensalâ€epithlial signaling mediated via Formyl Peptide Receptor. FASEB Journal, 2010, 24, 952.9.	0.2	0
106	Lactobacillus colonization induces ROSâ€dependent intestinal development. FASEB Journal, 2012, 26, 394.2.	0.2	0
107	Commensal microbiota modulate ROSâ€dependent cytoprotective gene expression in Drosophila intestinal epithelia. FASEB Journal, 2012, 26, 394.3.	0.2	0
108	Nâ€formyl peptide receptorâ€1 is important for homeostasis of intestinal epithelial cells. FASEB Journal, 2012, 26, 56.2.	0.2	0

Andrew S Neish

#	Article	IF	CITATIONS
109	The Nâ€Formyl peptide receptor 1 (FPR1) is required for enteric commensal mediated mucosal homeostasis and restitution. FASEB Journal, 2013, 27, 132.8.	0.2	O
110	PRAP1: A Novel Epithelial Secreted Protein. FASEB Journal, 2018, 32, 406.8.	0.2	0
111	Galectinâ€9 is a Novel Modulator of Epithelial Restitution. FASEB Journal, 2018, 32, 414.1.	0.2	O
112	Probiotic Lactobacilli Improves Intestinal Motility in Mice. FASEB Journal, 2018, 32, 875.4.	0.2	0
113	Functional Role of Microbiotaâ€derived Metabolites in the GPCRâ€mediated Regulation of Intestinal Wound Healing and Barrier Function. FASEB Journal, 2019, 33, 34.7.	0.2	O
114	Lactobacilli â€induced Generation of Reactive Oxygen Species via Formyl Peptide Receptorâ€1 (FPR1) Regulates Intestinal Motility in Mice. FASEB Journal, 2019, 33, 763.1.	0.2	0
115	371. Estimating SARS-CoV-2 Seroprevalence from Spent Blood Samples, January–March 2021. Open Forum Infectious Diseases, 2021, 8, S287-S288.	0.4	0