Vikas Nandwana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5788317/publications.pdf

Version: 2024-02-01

236833 276775 1,765 53 25 41 citations h-index g-index papers 58 58 58 2456 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosensors and Bioelectronics, 2022, 195, 113647.	5.3	34
2	Phosphate Elimination and Recovery Lightweight (PEARL) membrane: A sustainable environmental remediation approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
3	Multimodal Characterization of Hierarchically Porous Nanocomposite Materials: The Case Study of the PEARL Membrane. Microscopy and Microanalysis, 2021, 27, 2006-2009.	0.2	0
4	Lipocalinâ€Type Prostaglandin <scp>d</scp> Synthase Conjugates as Magnetic Resonance Imaging Contrast Agents for Detecting Amyloid βâ€Rich Regions in the Brain of Live Alzheimer's Disease Mice. Advanced NanoBiomed Research, 2021, 1, 2100019.	1.7	4
5	Magnetoferritin enhances T2 contrast in magnetic resonance imaging of macrophages. Materials Science and Engineering C, 2021, 128, 112282.	3.8	5
6	The Therapeutic and Diagnostic Potential of Amyloid β Oligomers Selective Antibodies to Treat Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 768646.	1.4	10
7	AÎ ² oligomer induced cognitive impairment and evaluation of ACU193â€MNSâ€based MRI in rabbit. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12087.	1.8	4
8	Multimodal Characterization of the Oleophilic Hydrophobic Magnetic (OHM) Sponge: <i>A Nanocomposite Material for Oil Spill Remediation</i> Microscopy and Microanalysis, 2020, 26, 2754-2756.	0.2	1
9	Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions. ACS Applied Materials & amp; Interfaces, 2020, 12, 55584-55595.	4.0	15
10	OHM Sponge: A Versatile, Efficient, and Ecofriendly Environmental Remediation Platform. Industrial & Logineering Chemistry Research, 2020, 59, 10945-10954.	1.8	18
11	Biomimetic Magnetic Nanostructures: A Theranostic Platform Targeting Lipid Metabolism and Immune Response in Lymphoma. ACS Nano, 2019, 13, 10301-10311.	7.3	14
12	Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. ACS Biomaterials Science and Engineering, 2019, 5, 3049-3059.	2.6	17
13	Magnetic lipid nanocapsules (MLNCs): self-assembled lipid-based nanoconstruct for non-invasive theranostic applications. Journal of Materials Chemistry B, 2018, 6, 1026-1034.	2.9	20
14	One-Pot Green Synthesis of Fe ₃ O ₄ /MoS ₂ OD/2D Nanocomposites and Their Application in Noninvasive Point-of-Care Glucose Diagnostics. ACS Applied Nano Materials, 2018, 1, 1949-1958.	2.4	33
15	Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27233-27243.	4.0	26
16	High-Density Lipoprotein-like Magnetic Nanostructures (HDL-MNS): Theranostic Agents for Cardiovascular Disease. Chemistry of Materials, 2017, 29, 2276-2282.	3.2	38
17	Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Advances, 2017, 7, 34892-34900.	1.7	18
18	Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6953-6961.	4.0	36

#	Article	IF	CITATIONS
19	Theranostic Magnetic Nanostructures (MNS) for Cancer. Cancer Treatment and Research, 2015, 166, 51-83.	0.2	30
20	Addition and corrections published 31st October 2013 to 10th July 2014. Chemical Communications, 2014, 50, 9595.	2.2	1
21	Effect of nano-scale curvature on the intrinsic blood coagulation system. Nanoscale, 2014, 6, 14484-14487.	2.8	27
22	Solvatochromic probes for detecting hydrogen-bond-donating solvents. Chemical Communications, 2014, 50, 4579.	2.2	29
23	Engineering the Nanoscale Morphology of a Quantum Dot–Fullerene Assembly via Complementary Hydrogen Bonding Interactions. Langmuir, 2013, 29, 7534-7537.	1.6	11
24	Patterning of Protein/Quantum Dot Hybrid Bionanostructures. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 227-232.	1.9	9
25	Aromatic Stacking Interactions in Flavin Model Systems. Accounts of Chemical Research, 2013, 46, 1000-1009.	7.6	42
26	Hierarchical Assembly of Collagen Peptide Triple Helices into Curved Disks and Metal Ion-Promoted Hollow Spheres. Journal of the American Chemical Society, 2013, 135, 3418-3422.	6.6	66
27	Synthesis and Characterization of Naphthalenediimide-Functionalized Flavin Derivatives. International Journal of Molecular Sciences, 2013, 14, 7468-7479.	1.8	5
28	Fluorescence resonance energy transfer in recognition-mediated polymer-quantum dot assemblies. Polymer Chemistry, 2012, 3, 3072.	1.9	3
29	Direct patterning of quantum dot nanostructures via electron beam lithography. Journal of Materials Chemistry, 2011, 21, 16859.	6.7	41
30	Response to Comment on "Inversed tunneling magnetoresistance in hybrid FePt/Fe3O4 core/shell nanoparticles systems―[J. Appl. Phys. 109, 086101 (2011)]. Journal of Applied Physics, 2011, 109, 086102.	1.1	0
31	Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology. International Journal of Molecular Sciences, 2011, 12, 6357-6366.	1.8	6
32	Magnetic Properties of Fe _{<i>y</i>} Au _{100â^'<i>x</i>â^'<i>y</i>} Nanoparticles. Journal of Nanoscience and Nanotechnology, 2010, 10, 2979-2983.	0.9	6
33	Inversed tunneling magnetoresistance in hybrid FePt/Fe3O4 core/shell nanoparticles systems. Journal of Applied Physics, 2010, 108, .	1.1	12
34	Bimagnetic nanoparticles with enhanced exchange coupling and energy products. Journal of Applied Physics, 2009, 105, .	1.1	44
35	Synthesis and Characterization of Magnetic FePt/Au Core/Shell Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 13088-13091.	1.5	40
36	Phase Transformation and Magnetic Hardening in Isolated FePt Nanoparticles. IEEE Nanotechnology Magazine, 2009, 8, 437-443.	1.1	3

#	Article	lF	Citations
37	Rapid thermal annealing of FePt nanoparticles. Journal of Applied Physics, 2008, 104, 013918.	1.1	33
38	Synthesis and Characterization of Bimagnetic Bricklike Nanoparticles. Chemistry of Materials, 2008, 20, 475-478.	3.2	49
39	Synthesis of FePt nanorods and nanowires by a facile method. Nanotechnology, 2008, 19, 355601.	1.3	42
40	Magnetic Hardening in Isolated FePt Nanoparticles. , 2008, , .		1
41	A Novel Approach to Synthesis of FePt Magnetic Nanoparticles. Journal of Nano Research, 2008, 1, 23-30.	0.8	8
42	High thermal stability of carbon-coated L10-FePt nanoparticles prepared by salt-matrix annealing. Journal of Applied Physics, 2008, 103, .	1.1	43
43	Formation of Fe3Pt phase in FePt-based nanocomposite magnets. Journal Physics D: Applied Physics, 2007, 40, 712-716.	1.3	36
44	Microstructures and magnetic alignment of L10 FePt nanoparticles. Journal of Applied Physics, 2007, 101, 09J113.	1.1	26
45	Structural phase transition and ferromagnetism in monodisperse 3 nm FePt particles. Journal of Applied Physics, 2007, 102, .	1.1	35
46	Bulk FePt-based nanocomposite magnets with enhanced exchange coupling. Journal of Applied Physics, 2007, 102, 023908.	1.1	52
47	Bulk FePtâ^•Fe3Pt nanocomposite magnets prepared by spark plasma sintering. Journal of Applied Physics, 2007, 101, 09K515.	1.1	24
48	Size and Shape Control of Monodisperse FePt Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 4185-4189.	1.5	142
49	Hard magnetic FePt nanoparticles by salt-matrix annealing. Journal of Applied Physics, 2006, 99, 08E911.	1.1	83
50	Phase Transformation of FePt Nanoparticles. IEEE Transactions on Magnetics, 2006, 42, 3036-3041.	1.2	31
51	Size-Dependent Chemical and Magnetic Ordering inL10-FePt Nanoparticles. Advanced Materials, 2006, 18, 2984-2988.	11.1	307
52	Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. Journal Physics D: Applied Physics, 2005, 38, 2306-2309.	1.3	146
53	Magnetic hardening in ultrafine FePt nanoparticle assembled films. Nanotechnology, 2005, 16, 2823-2826.	1.3	25