
Vasileios Kyriakou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in the Electrochemical Synthesis of Ammonia. Catalysis Today, 2017, 286, 2-13.	4.4	502
2	An Electrochemical Haber-Bosch Process. Joule, 2020, 4, 142-158.	24.0	325
3	<i>In Situ</i> Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. ACS Nano, 2019, 13, 12996-13005.	14.6	144
4	Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells. Frontiers in Energy Research, 2014, 2, .	2.3	99
5	Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. Journal of CO2 Utilization, 2017, 21, 562-571.	6.8	91
6	Carbon dioxide hydrogenation over supported Au nanoparticles: Effect of the support. Journal of CO2 Utilization, 2017, 19, 247-256.	6.8	57
7	Solid Electrolytes: Applications in Heterogeneous Catalysis and Chemical Cogeneration. Industrial & Engineering Chemistry Research, 2011, 50, 431-472.	3.7	55
8	Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell. Solid State Ionics, 2015, 275, 110-116.	2.7	55
9	Methane steam reforming at low temperatures in a BaZr0.7Ce0.2Y0.1O2.9 proton conducting membrane reactor. Applied Catalysis B: Environmental, 2016, 186, 1-9.	20.2	55
10	Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios. Applied Catalysis B: Environmental, 2019, 258, 117950.	20.2	53
11	Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases. ACS Catalysis, 2020, 10, 1278-1288.	11.2	52
12	Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell. Solid State Ionics, 2016, 288, 357-362.	2.7	50
13	Plasma Activated Electrochemical Ammonia Synthesis from Nitrogen and Water. ACS Energy Letters, 2021, 6, 313-319.	17.4	44
14	Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell. RSC Advances, 2014, 4, 18792-18800.	3.6	42
15	Plasma-Activated Electrolysis for Cogeneration of Nitric Oxide and Hydrogen from Water and Nitrogen. ACS Energy Letters, 2019, 4, 2091-2095.	17.4	35
16	Highly active and stable TiO2-supported Au nanoparticles for CO2 reduction. Catalysis Communications, 2017, 98, 52-56.	3.3	29
17	Reaction Rate Enhancement During the Electrocatalytic Synthesis of Ammonia in a BaZr0.7Ce0.2Y0.1O2.9 Solid Electrolyte Cell. Topics in Catalysis, 2015, 58, 1193-1201.	2.8	27
18	Direct utilization of lignite coal in a Co–CeO 2 /YSZ/Ag solid oxide fuel cell. International Journal of Hydrogen Energy, 2015, 40, 14353-14363.	7.1	21

VASILEIOS KYRIAKOU

#	Article	IF	CITATIONS
19	Chemical reactors with high temperature proton conductors as a main component: Progress in the past decade. Solid State Ionics, 2017, 306, 76-81.	2.7	20
20	Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides. Small Methods, 2021, 5, e2100868.	8.6	19
21	Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis. Electrochemistry Communications, 2017, 84, 40-44.	4.7	17
22	Enhancement of Ammonia Synthesis on a Co ₃ Mo ₃ N-Ag Electrocatalyst in a K-βAl ₂ O ₃ Solid Electrolyte Cell. ACS Sustainable Chemistry and Engineering, 2017, 5, 8844-8851.	6.7	17
23	A protonic ceramic membrane reactor for the production of hydrogen from coal steam gasification. Journal of Membrane Science, 2018, 553, 163-170.	8.2	16
24	Production of H2 and C2 hydrocarbons from methane in a proton conducting solid electrolyte cell using a Au–5Ce–5Na2WO4/SiO2 anode. International Journal of Hydrogen Energy, 2012, 37, 16636-16641.	7.1	14
25	Electrochemical promotion of catalytic reactions: Thermodynamic analysis and calculation of the limits in Faradaic Efficiency. Solid State Ionics, 2013, 231, 58-62.	2.7	14
26	Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell. Solid State Ionics, 2016, 288, 140-146.	2.7	14
27	Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 12646-12654.	6.7	13
28	CO2 conversion via coupled plasma-electrolysis process. Journal of CO2 Utilization, 2022, 57, 101904.	6.8	13
29	Production of C2 hydrocarbons and H2 from CH4 in a proton conducting cell. Solid State Ionics, 2012, 225, 219-222.	2.7	10
30	Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process. Chinese Journal of Catalysis, 2015, 36, 509-516.	14.0	10
31	The combined impact of carbon type and catalyst-aided gasification process on the performance of a Direct Carbon Solid Oxide Fuel Cell. Solid State Ionics, 2018, 317, 268-275.	2.7	8
32	Steam electrolysis with simultaneous production of C2 hydrocarbons in a solid electrolyte cell. International Journal of Hydrogen Energy, 2014, 39, 675-683.	7.1	6
33	lso-octane internal reforming in a solid oxide cell reactor. Solid State Ionics, 2016, 288, 135-139.	2.7	6
34	lso-Octane Internal Reforming in a Solid Oxide Fuel Cell Using Co/CeO2 as Anode. ECS Transactions, 2013, 58, 131-143.	0.5	2
35	Fabrication of Thin Electrodic Films by Solution Aerosol Thermolysis (SAT). ECS Transactions, 2017, 78, 1839-1850.	0.5	2
36	Fabrication and Characterization of thin Ceramic Films by Spray Pyrolysis. Materials Today: Proceedings, 2018, 5, 27636-27644.	1.8	1

#	Article	IF	CITATIONS
37	Demonstration of hydrogen production in a hybrid lignite-assisted solid oxide electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 22770-22779.	7.1	1
38	Fabrication of Thin Functional Films by Solution Aerosol Thermolysis (SAT). ECS Journal of Solid State Science and Technology, 2018, 7, P660-P670.	1.8	0