List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787952/publications.pdf Version: 2024-02-01

Yuluo

#	Article	IF	CITATIONS
1	Enhanced Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells on Graphene Oxide-Incorporated Electrospun Poly(lactic- <i>co</i> glycolic acid) Nanofibrous Mats. ACS Applied Materials & Interfaces, 2015, 7, 6331-6339.	4.0	285
2	Organic Semiconducting Proâ€nanostimulants for Nearâ€Infrared Photoactivatable Cancer Immunotherapy. Angewandte Chemie - International Edition, 2019, 58, 12680-12687.	7.2	263
3	Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials, 2014, 35, 3666-3677.	5.7	236
4	Second Nearâ€Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. Advanced Materials, 2021, 33, e2003458.	11.1	197
5	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 12682-12705.	7.2	151
6	Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. Journal of Materials Chemistry, 2012, 22, 15110.	6.7	128
7	RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T ₁ -weighted MR imaging of gliomas. Nanoscale, 2015, 7, 14538-14546.	2.8	128
8	Biodegradable Fe(III)@WS ₂ â€PVP Nanocapsules for Redox Reaction and TMEâ€Enhanced Nanocatalytic, Photothermal, and Chemotherapy. Advanced Functional Materials, 2019, 29, 1901722.	7.8	128
9	Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18133-18144.	4.0	120
10	Multiâ€Responsive Biodegradable Cationic Nanogels for Highly Efficient Treatment of Tumors. Advanced Functional Materials, 2021, 31, 2100227.	7.8	117
11	Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Scientific Reports, 2016, 6, 28325.	1.6	105
12	Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydrate Polymers, 2013, 91, 419-427.	5.1	97
13	^{99m} Tc-Labeled Multifunctional Low-Generation Dendrimer-Entrapped Gold Nanoparticles for Targeted SPECT/CT Dual-Mode Imaging of Tumors. ACS Applied Materials & Interfaces, 2016, 8, 19883-19891.	4.0	95
14	Electrospun laponite-doped poly(lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry, 2012, 22, 23357.	6.7	91
15	Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polymer Chemistry, 2010, 1, 1677.	1.9	88
16	Conjugation of Iron Oxide Nanoparticles with RGD-Modified Dendrimers for Targeted Tumor MR Imaging. ACS Applied Materials & Interfaces, 2015, 7, 5420-5428.	4.0	85
17	Intelligent Nanocomposites with Intrinsic Blood–Brainâ€Barrier Crossing Ability Designed for Highly Specific MR Imaging and Sonodynamic Therapy of Glioblastoma. Small, 2020, 16, e1906985.	5.2	73
18	Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Applied Materials & Interfaces, 2020, 12, 30145-30154.	4.0	72

#	Article	IF	CITATIONS
19	Photothermoâ€Promoted Nanocatalysis Combined with H ₂ Sâ€Mediated Respiration Inhibition for Efficient Cancer Therapy. Advanced Functional Materials, 2021, 31, 2007991.	7.8	70
20	Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T ₁ -weighted magnetic resonance imaging applications. Journal of Materials Chemistry B, 2017, 5, 7267-7273.	2.9	69
21	Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomaterials Science, 2015, 3, 721-732.	2.6	61
22	Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. Journal of Materials Chemistry B, 2015, 3, 286-295.	2.9	56
23	Organic Semiconducting Proâ€nanostimulants for Nearâ€Infrared Photoactivatable Cancer Immunotherapy. Angewandte Chemie, 2019, 131, 12810-12817.	1.6	50
24	Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. Journal of Materials Chemistry B, 2014, 2, 7384-7393.	2.9	45
25	LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomaterials Science, 2016, 4, 474-482.	2.6	41
26	Hyalase-Mediated Cascade Degradation of a Matrix Barrier and Immune Cell Penetration by a Photothermal Microneedle for Efficient Anticancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 26790-26799.	4.0	40
27	Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Scientific Reports, 2016, 6, 33844.	1.6	38
28	Mesoporous Silica Nanoparticlesâ€Reinforced Hydrogel Scaffold together with Pinacidil Loading to Improve Stem Cell Adhesion. ChemNanoMat, 2018, 4, 631-641.	1.5	37
29	Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chemical Communications, 2019, 55, 1963-1966.	2.2	35
30	Formation of iron oxide nanoparticle-loaded γ-polyglutamic acid nanogels for MR imaging of tumors. Journal of Materials Chemistry B, 2015, 3, 8684-8693.	2.9	32
31	Controlled release of doxorubicin from electrospun MWCNTs/PLGA hybrid nanofibers. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1047-1059.	2.0	32
32	Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 2015, 5, 2383-2391.	1.7	31
33	Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chinese Journal of Polymer Science (English Edition), 2016, 34, 755-765.	2.0	30
34	Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T 1 -weighted tumor MR imaging. Colloids and Surfaces B: Biointerfaces, 2015, 136, 506-513.	2.5	29
35	Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators. Journal of Nanobiotechnology, 2021, 19, 433.	4.2	29
36	Ultrasmall graphene oxide based T1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2475-2483.	1.7	27

#	Article	IF	CITATIONS
37	Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 7149-7159.	2.9	26
38	The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. Journal of Materials Chemistry B, 2016, 4, 7220-7225.	2.9	24
39	Transferrin Receptorâ€Mediated Sequential Intercellular Nanoparticles Relay for Tumor Deep Penetration and Sonodynamic Therapy. Advanced Therapeutics, 2019, 2, 1800152.	1.6	24
40	Dendrimer-Functionalized Laponite Nanodisks as a Platform for Anticancer Drug Delivery. Nanomaterials, 2015, 5, 1716-1731.	1.9	23
41	Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chemical Engineering Journal, 2020, 379, 122251.	6.6	23
42	Construction of nanomaterials as contrast agents or probes for glioma imaging. Journal of Nanobiotechnology, 2021, 19, 125.	4.2	22
43	Facile preparation of hyaluronic acid-modified Fe ₃ O ₄ @Mn ₃ O ₄ nanocomposites for targeted T ₁ /T ₂ dual-mode MR imaging of cancer cells. RSC Advances, 2016, 6, 35295-35304.	1.7	21
44	Hyaluronic acid-mediated multifunctional iron oxide-based MRI nanoprobes for dynamic monitoring of pancreatic cancer. RSC Advances, 2019, 9, 10486-10493.	1.7	21
45	Dual-Therapeutics-Loaded Mesoporous Silica Nanoparticles Applied for Breast Tumor Therapy. ACS Applied Materials & Interfaces, 2019, 11, 46497-46503.	4.0	20
46	Poly(γ-glutamic acid)-stabilized iron oxide nanoparticles: synthesis, characterization and applications for MR imaging of tumors. RSC Advances, 2015, 5, 76700-76707.	1.7	18
47	Targeted Therapeutic-Immunomodulatory Nanoplatform Based on Noncrystalline Selenium. ACS Applied Materials & Interfaces, 2019, 11, 45404-45415.	4.0	18
48	Directed osteogenic differentiation of mesenchymal stem cell in three-dimensional biodegradable methylcellulose-based scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 135, 332-338.	2.5	14
49	On-Demand Detaching Nanosystem for the Spatiotemporal Control of Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 16285-16295.	4.0	14
50	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 12792-12815.	1.6	14
51	The Ordered and Disordered Nano-Intermetallic AuCu/C Catalysts for the Oxygen Reduction Reaction: The Differences of the Electrochemical Performance. Journal of the Electrochemical Society, 2017, 164, F1654-F1661.	1.3	12
52	Heat shock protein-guided dual-mode CT/MR imaging of orthotopic hepatocellular carcinoma tumor. Journal of Materials Chemistry B, 2018, 6, 1342-1350.	2.9	8
53	Electrospun attapulgite-doped poly(lactic- co -glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. Journal of Controlled Release, 2015, 213, e146.	4.8	6
54	Targeted delivery of doxorubicin by lactobionic acid-modified laponite to hepatocarcinoma cells. Journal of Controlled Release, 2015, 213, e34.	4.8	5

#	Article	IF	CITATIONS
55	Disulfide Bond Reversible Strategy Enables CSH Responsiveâ€Transferrin Nanoparticles for Precise Chemotherapy. Advanced Therapeutics, 2020, 3, 2000064.	1.6	3
56	A cation exchange strategy to construct a targeting nanoprobe for enhanced <i>T</i> ₁ -weighted MR imaging of tumors. Journal of Materials Chemistry B, 2020, 8, 8519-8526.	2.9	3
57	VHPKQHR Peptide Modified Ultrasmall Paramagnetic Iron Oxide Nanoparticles Targeting Rheumatoid Arthritis for T1-Weighted Magnetic Resonance Imaging. Frontiers in Bioengineering and Biotechnology, 2022, 10, 821256.	2.0	1