

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787945/publications.pdf Version: 2024-02-01

WENYL

#	Article	IF	CITATIONS
1	Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering Reports, 2019, 135, 58-84.	14.8	604
2	Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nature Communications, 2016, 7, 13318.	5.8	226
3	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries. ACS Energy Letters, 2018, 3, 2899-2907.	8.8	224
4	Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Advanced Energy Materials, 2020, 10, 2001705.	10.2	189
5	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	8.8	175
6	Direct Pyrolysis of Supermolecules: An Ultrahigh Edgeâ€Nitrogen Doping Strategy of Carbon Anodes for Potassiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2000732.	11.1	164
7	A Site elective Doping Strategy of Carbon Anodes with Remarkable Kâ€ŀon Storage Capacity. Angewandte Chemie - International Edition, 2020, 59, 4448-4455.	7.2	162
8	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	8.8	160
9	Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2103617.	11.1	151
10	Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application. Advanced Functional Materials, 2017, 27, 1702437.	7.8	136
11	Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters, 2019, 4, 1584-1593.	8.8	117
12	An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 2019, 29, 1805978.	7.8	109
13	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	8.8	97
14	Organic Acid Etching Strategy for Dendrite Suppression in Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2102797.	10.2	79
15	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	1.7	57
16	Hydrated eutectic electrolytes for high-performance Mg-ion batteries. Energy and Environmental Science, 2022, 15, 1282-1292.	15.6	56
17	Understanding Ostwald Ripening and Surface Charging Effects in Solvothermallyâ€Prepared Metal Oxide–Carbon Anodes for High Performance Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1902194.	10.2	50
18	A Siteâ€5elective Doping Strategy of Carbon Anodes with Remarkable Kâ€ion Storage Capacity. Angewandte Chemie, 2020, 132, 4478-4485.	1.6	48

Wenxi

#	Article	IF	CITATIONS
19	A Hierarchical Three-Dimensional Porous Laser-Scribed Graphene Film for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 18833-18839.	4.0	37
20	FeSe2 nanoparticle embedded in 3D honeycomb-like N-doped carbon architectures coupled with electrolytes engineering boost superior potassium ion storage. Electrochimica Acta, 2021, 366, 137381.	2.6	18
21	Carbon Nanotubes Coupled with Metal Ion Diffusion Layers Stabilize Oxide Conversion Reactions in High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16276-16285.	4.0	14
22	Efficient Naâ€lon Storage in 2D TiS ₂ Formed by a Vapor Phase Anionâ€Exchange Process. Small Methods, 2020, 4, 2000439.	4.6	12
23	Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 110758-110764.	1.7	10