Michael P Hay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787882/publications.pdf Version: 2024-02-01

Μιςήλει Ρ.Ηλγ

#	Article	lF	CITATIONS
1	Radiosensitisation of SCCVII tumours and normal tissues in mice by the DNA-dependent protein kinase inhibitor AZD7648. Radiotherapy and Oncology, 2022, 166, 162-170.	0.3	7
2	Spin Trapping Hydroxyl and Aryl Radicals of One-Electron Reduced Anticancer Benzotriazine 1,4-Dioxides. Molecules, 2022, 27, 812.	1.7	1
3	Subcellular Location of Tirapazamine Reduction Dramatically Affects Aerobic but Not Anoxic Cytotoxicity. Molecules, 2020, 25, 4888.	1.7	4
4	Patient-Derived Xenograft and Organoid Models for Precision Medicine Targeting of the Tumour Microenvironment in Head and Neck Cancer. Cancers, 2020, 12, 3743.	1.7	19
5	Identification of Small-Molecule Positive Modulators of Calcitonin-like Receptor-Based Receptors. ACS Pharmacology and Translational Science, 2020, 3, 305-320.	2.5	17
6	Benzotriazine Di-Oxide Prodrugs for Exploiting Hypoxia and Low Extracellular pH in Tumors. Molecules, 2019, 24, 2524.	1.7	3
7	Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361. Biochemical Pharmacology, 2019, 169, 113641.	2.0	19
8	Radiosensitization of head and neck squamous cell carcinoma lines by DNA-PK inhibitors is more effective than PARP-1 inhibition and is enhanced by SLFN11 and hypoxia. International Journal of Radiation Biology, 2019, 95, 1597-1612.	1.0	26
9	Studies Towards Hypoxia-Activated Prodrugs of PARP Inhibitors. Molecules, 2019, 24, 1559.	1.7	11
10	Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clinical Oncology, 2019, 31, 290-302.	0.6	22
11	Targeting growth hormone function: strategies and therapeutic applications. Signal Transduction and Targeted Therapy, 2019, 4, 3.	7.1	74
12	Hypoxiaâ€Activated Prodrugs of PERK Inhibitors. Chemistry - an Asian Journal, 2019, 14, 1238-1248.	1.7	10
13	Next-Generation Hypoxic Cell Radiosensitizers: Nitroimidazole Alkylsulfonamides. Journal of Medicinal Chemistry, 2018, 61, 1241-1254.	2.9	52
14	Cellular pharmacology of evofosfamide (TH-302): A critical re-evaluation of its bystander effects. Biochemical Pharmacology, 2018, 156, 265-280.	2.0	22
15	Dynamin impacts homology-directed repair and breast cancer response to chemotherapy. Journal of Clinical Investigation, 2018, 128, 5307-5321.	3.9	20
16	Chemical Space Mimicry for Drug Discovery. Journal of Chemical Information and Modeling, 2017, 57, 875-882.	2.5	63
17	Reductive Metabolism Influences the Toxicity and Pharmacokinetics of the Hypoxia-Targeted Benzotriazine Di-Oxide Anticancer Agent SN30000 in Mice. Frontiers in Pharmacology, 2017, 8, 531.	1.6	16
18	Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di- <i>N</i> -Oxides. Chemical Research in Toxicology, 2016, 29, 1310-1324.	1.7	19

MICHAEL P HAY

#	Article	IF	CITATIONS
19	Acridine Derivatives as Inhibitors of the IRE1α–XBP1 Pathway Are Cytotoxic to Human Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 2055-2065.	1.9	24
20	Efficient Protocol for the Identification of Hypoxic Cell Radiosensitisers. Advances in Experimental Medicine and Biology, 2016, 899, 269-290.	0.8	3
21	Identifying novel targets in renal cell carcinoma: Design and synthesis of affinity chromatography reagents. Bioorganic and Medicinal Chemistry, 2014, 22, 711-720.	1.4	6
22	Characterisation of radicals formed by the triazine 1,4-dioxide hypoxia-activated prodrug, SN30000. Organic and Biomolecular Chemistry, 2014, 12, 3386-3392.	1.5	22
23	Fragmentation of the quinoxaline N-oxide bond to the ˙OH radical upon one-electron bioreduction. Chemical Communications, 2014, 50, 13729-13731.	2.2	10
24	Novel nitroimidazole alkylsulfonamides as hypoxic cell radiosensitisers. Bioorganic and Medicinal Chemistry, 2014, 22, 2123-2132.	1.4	18
25	Photodegradation of the Benzotriazine 1,4-Di-N-Oxide Hypoxia-Activated Prodrug SN30000 in Aqueous Solution. Journal of Pharmaceutical Sciences, 2014, 103, 3464-3472.	1.6	7
26	Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2014, 772, 111-145.	0.8	19
27	Pseudomonas aeruginosa NfsB and nitro-CBI-DEI – a promising enzyme/prodrug combination for gene directed enzyme prodrug therapy. Molecular Cancer, 2013, 12, 58.	7.9	13
28	¹⁸ F-EF5 PET Imaging as an Early Response Biomarker for the Hypoxia-Activated Prodrug SN30000 Combined with Radiation Treatment in a Non–Small Cell Lung Cancer Xenograft Model. Journal of Nuclear Medicine, 2013, 54, 1339-1346.	2.8	31
29	The 2-Nitroimidazole EF5 Is a Biomarker for Oxidoreductases That Activate the Bioreductive Prodrug CEN-209 under Hypoxia. Clinical Cancer Research, 2012, 18, 1684-1695.	3.2	67
30	Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: Comparison with other hypoxia-activated prodrugs. Biochemical Pharmacology, 2012, 83, 574-585.	2.0	42
31	Characterisation of enzyme prodrug gene therapy combinations in coated spheroids and vascular networks <i>in vitro</i> . Journal of Gene Medicine, 2012, 14, 62-74.	1.4	6
32	Targeting GLUT1 and the Warburg Effect in Renal Cell Carcinoma by Chemical Synthetic Lethality. Science Translational Medicine, 2011, 3, 94ra70.	5.8	431
33	Targeting hypoxia in cancer therapy. Nature Reviews Cancer, 2011, 11, 393-410.	12.8	2,607
34	SAR studies of 4-pyridyl heterocyclic anilines that selectively induce autophagic cell death in von Hippel-Lindau-deficient renal cell carcinoma cells. Bioorganic and Medicinal Chemistry, 2011, 19, 3347-3356.	1.4	22
35	4-Pyridylanilinothiazoles That Selectively Target von Hippelâ^'Lindau Deficient Renal Cell Carcinoma Cells by Inducing Autophagic Cell Death. Journal of Medicinal Chemistry, 2010, 53, 787-797.	2.9	55
36	Pharmacokinetic/Pharmacodynamic Modeling Identifies SN30000 and SN29751 as Tirapazamine Analogues with Improved Tissue Penetration and Hypoxic Cell Killing in Tumors. Clinical Cancer Research, 2010, 16, 4946-4957.	3.2	120

MICHAEL P HAY

#	Article	IF	CITATIONS
37	Characterization of Radicals Formed Following Enzymatic Reduction of 3-Substituted Analogues of the Hypoxia-Selective Cytotoxin 3-Amino-1,2,4-Benzotriazine 1,4-Dioxide (Tirapazamine). Journal of the American Chemical Society, 2010, 132, 2591-2599.	6.6	40
38	Abstract 67: Selective cytotoxic targeting of von Hippel-Lindau-deficient renal cell carcinoma cells. Cancer Research, 2010, 70, 67-67.	0.4	3
39	Spin Trapping of Radicals Other Than the [•] OH Radical upon Reduction of the Anticancer Agent Tirapazamine by Cytochrome P ₄₅₀ Reductase. Journal of the American Chemical Society, 2009, 131, 14220-14221.	6.6	55
40	One-Electron Reduction Potential of the Neutral Guanyl Radical in the GC Base Pair of Duplex DNA. Journal of the American Chemical Society, 2009, 131, 5203-5207.	6.6	34
41	Tricyclic [1,2,4]Triazine 1,4-Dioxides As Hypoxia Selective Cytotoxins. Journal of Medicinal Chemistry, 2008, 51, 6853-6865.	2.9	66
42	A Molecule Targeting VHL-Deficient Renal Cell Carcinoma that Induces Autophagy. Cancer Cell, 2008, 14, 90-102.	7.7	233
43	Prediction of Tumour Tissue Diffusion Coefficients of Hypoxia-Activated Prodrugs from Physicochemical Parameters. Australian Journal of Chemistry, 2008, 61, 687.	0.5	38
44	Pharmacokinetic/Pharmacodynamic Model-Guided Identification of Hypoxia-Selective 1,2,4-Benzotriazine 1,4-Dioxides with Antitumor Activity: The Role of Extravascular Transport. Journal of Medicinal Chemistry, 2007, 50, 6392-6404.	2.9	40
45	Hypoxia-Selective 3-Alkyl 1,2,4-Benzotriazine 1,4-Dioxides: The Influence of Hydrogen Bond Donors on Extravascular Transport and Antitumor Activity. Journal of Medicinal Chemistry, 2007, 50, 6654-6664.	2.9	43
46	Potentiation of the Cytotoxicity of the Anticancer Agent Tirapazamine by BenzotriazineN-oxides:Â The Role of Redox Equilibria. Journal of the American Chemical Society, 2006, 128, 245-249.	6.6	34
47	Stille Coupling Reactions in the Synthesis of Hypoxia-Selective 3-Alkyl-1,2,4-Benzotriazine 1,4-Dioxide Anticancer Agents. Journal of Organic Chemistry, 2006, 71, 6530-6535.	1.7	35
48	Complete1H,13C and15N NMR assignment of tirapazamine and related 1,2,4-benzotriazineN-oxides. Magnetic Resonance in Chemistry, 2006, 44, 948-954.	1.1	17
49	Use of Three-Dimensional Tissue Cultures to Model Extravascular Transport and Predict In Vivo Activity of Hypoxia-Targeted Anticancer Drugs. Journal of the National Cancer Institute, 2006, 98, 1118-1128.	3.0	139
50	Nitroarylmethylcarbamate prodrugs of doxorubicin for use with nitroreductase gene-directed enzyme prodrug therapy. Bioorganic and Medicinal Chemistry, 2005, 13, 4043-4055.	1.4	36
51	Extravascular Transport of Drugs in Tumor Tissue:Â Effect of Lipophilicity on Diffusion of Tirapazamine Analogues in Multicellular Layer Cultures. Journal of Medicinal Chemistry, 2005, 48, 1079-1087.	2.9	55
52	Radical properties governing the hypoxia-selective cytotoxicity of antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides. Organic and Biomolecular Chemistry, 2005, 3, 2167.	1.5	31
53	Selective Potentiation of the Hypoxic Cytotoxicity of Tirapazamine by Its 1-N-Oxide Metabolite SR 4317. Cancer Research, 2004, 64, 736-742.	0.4	48
54	Oxidation of 2-Deoxyribose by Benzotriazinyl Radicals of Antitumor 3-Amino-1,2,4-benzotriazine 1,4-Dioxides. Journal of the American Chemical Society, 2004, 126, 7865-7874.	6.6	37

MICHAEL P HAY

#	Article	IF	CITATIONS
55	DNA-Targeted 1,2,4-Benzotriazine 1,4-Dioxides:  Potent Analogues of the Hypoxia-Selective Cytotoxin Tirapazamine. Journal of Medicinal Chemistry, 2004, 47, 475-488.	2.9	64
56	Improved potency of the hypoxic cytotoxin tirapazamine by DNA-targeting. Biochemical Pharmacology, 2003, 65, 1807-1815.	2.0	31
57	Structureâ^'Activity Relationships of 1,2,4-Benzotriazine 1,4-Dioxides as Hypoxia-Selective Analogues of Tirapazamine. Journal of Medicinal Chemistry, 2003, 46, 169-182.	2.9	112
58	Activation of 3-Amino-1,2,4-benzotriazine 1,4-Dioxide Antitumor Agents to Oxidizing Species Following Their One-Electron Reduction. Journal of the American Chemical Society, 2003, 125, 748-756.	6.6	114
59	Structureâ^'Activity Relationships for 4-Nitrobenzyl Carbamates of 5-Aminobenz[e]indoline Minor Groove Alkylating Agents as Prodrugs for GDEPT in Conjunction withE.coliNitroreductase. Journal of Medicinal Chemistry, 2003, 46, 2456-2466.	2.9	35
60	Enhanced Conversion of DNA Radical Damage to Double Strand Breaks by 1,2,4-Benzotriazine 1,4-Dioxides Linked to a DNA Binder Compared to Tirapazamine. Chemical Research in Toxicology, 2003, 16, 1477-1483.	1.7	23
61	Synthesis and Evaluation of Nitroheterocyclic Carbamate Prodrugs for Use with Nitroreductase-Mediated Gene-Directed Enzyme Prodrug Therapy. Journal of Medicinal Chemistry, 2003, 46, 5533-5545.	2.9	59
62	New and versatile syntheses of 3-alkyl- and 3-aryl-1,2,4-benzotriazine 1,4-dioxides: preparation of the bioreductive cytotoxins SR 4895 and SR 4941. Tetrahedron Letters, 2002, 43, 9569-9571.	0.7	12
63	Design, Synthesis and Evaluation of Imidazolylmethyl Carbamate Prodrugs of Alkylating Agents. Tetrahedron, 2000, 56, 645-657.	1.0	34
64	Leaving group effects in reductively triggered fragmentation of 4-nitrobenzyl carbamates â€. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1601-1608.	1.3	21
65	A 2-nitroimidazole carbamate prodrug of 5-amino-1-(chloromethyl)-3-[(5,6,7-trimethoxyindol-2-yl)carbonyl]-1,2-dihydro-3H-benz[e]indole (amino-seco-CBI-TMI) for use with ADEPT and GDEPT. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2237-2242.	1.0	52
66	Nitrobenzyl carbamate prodrugs of enediynes for nitroreductase gene-directed enzyme prodrug therapy (GDEPT). Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3417-3422.	1.0	33
67	Substituent effects on the kinetics of reductively-initiated fragmentation of nitrobenzyl carbamates designed as triggers for bioreductive prodrugs. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2759-2770.	0.9	40
68	Hypoxia-Selective Antitumor Agents. 10. Bis(nitroimidazoles) and Related Bis(nitroheterocycles): Development of Derivatives with Higher Rates of Metabolic Activation under Hypoxia and Improved Aqueous Solubility. Journal of Medicinal Chemistry, 1995, 38, 1928-1941.	2.9	25
69	Hypoxia-selective antitumor agents. 8. Bis(nitroimidazolyl)alkanecarboxamides: a new class of hypoxia-selective cytotoxins and hypoxic cell radiosensitizers. Journal of Medicinal Chemistry, 1994, 37, 381-391.	2.9	63
70	Bromination of N-phthaloylamino acid derivatives. Journal of the Chemical Society Chemical Communications, 1989, , 385.	2.0	12
71	Selective reaction of glycine residues in hydrogen atom transfer from amino acid derivatives. Journal of the American Chemical Society, 1989, 111, 1047-1052.	6.6	76
72	Preferential reactivity of glycine residues in free radical reactions of amino acid derivatives. Journal of the Chemical Society Chemical Communications, 1986, , 55.	2.0	35