Wojciech Gac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787211/publications.pdf

Version: 2024-02-01

		304368	264894
58	1,855	22	42
papers	citations	h-index	g-index
50	FO	FO	2407
59	59	59	2407
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Effects of Ce and W Promoters on the Performance of Alumina-Supported Nickel Catalysts in CO2 Methanation Reaction. Catalysts, 2022, 12, 13.	1.6	1
2	Impact of Hydrothermally Prepared Support on the Catalytic Properties of CuCe Oxide for Preferential CO Oxidation Reaction. Catalysts, 2022, 12, 674.	1.6	5
3	Co/CeO2 and Ni/CeO2 catalysts for ethanol steam reforming: Effect of the cobalt/nickel dispersion on catalysts properties. Journal of Catalysis, 2021, 393, 159-178.	3.1	43
4	Direct Conversion of Carbon Dioxide to Methane over Ceria―and Aluminaâ€Supported Nickel Catalysts for Biogas Valorization. ChemPlusChem, 2021, 86, 889-903.	1.3	9
5	The state of BEA zeolite supported nickel catalysts in CO2 methanation reaction. Applied Surface Science, 2021, 564, 150421.	3.1	18
6	Copper-promoted ceria catalysts for CO oxidation reaction. Catalysis Today, 2020, 355, 647-653.	2.2	21
7	Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction. Catalysis Today, 2020, 357, 468-482.	2.2	56
8	Catalytic activity of Pt species variously dispersed on hollow ZrO2 spheres in combustion of volatile organic compounds. Applied Surface Science, 2020, 513, 145788.	3.1	41
9	Investigation of the Inhibiting Role of Hydrogen in the Steam Reforming of Methanol. ChemCatChem, 2019, 11, 3264-3278.	1.8	10
10	CO 2 Methanation in Microstructured Reactors – Catalyst Development and Process Design. Chemical Engineering and Technology, 2019, 42, 2076-2084.	0.9	18
11	CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies. Topics in Catalysis, 2019, 62, 524-534.	1.3	33
12	Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction. Applied Surface Science, 2018, 440, 1047-1062.	3.1	36
13	Effects of dealumination on the performance of Ni-containing BEA catalysts in bioethanol steam reforming. Applied Catalysis B: Environmental, 2018, 237, 94-109.	10.8	52
14	P-Arylation of secondary phosphine oxides catalyzed by nickel-supported nanoparticles. Organic Chemistry Frontiers, 2018, 5, 2079-2085.	2.3	22
15	Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous and Mesoporous Materials, 2018, 272, 79-91.	2.2	55
16	Surface State and Catalytic Performance of Ceriaâ€Supported Cobalt Catalysts in the Steam Reforming of Ethanol. ChemCatChem, 2017, 9, 782-797.	1.8	34
17	Application of microemulsion method for development of methanol steam reforming Pd/ZnO catalysts. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1265-1272.	2.0	2
18	The vibrational spectrum of 1,4-dioxane in aqueous solution – theory and experiment. New Journal of Chemistry, 2016, 40, 7663-7670.	1.4	16

#	Article	IF	CITATIONS
19	Chromium-modified zinc oxides. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1205-1215.	2.0	10
20	The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides. Materials Research Bulletin, 2016, 78, 36-45.	2.7	3
21	Structural and surface changes of copper modified manganese oxides. Applied Surface Science, 2016, 370, 536-544.	3.1	17
22	Study on the effect of atmospheric gases adsorbed in MnFe2O4/MCM-41 nanocomposite on ortho-positronium annihilation. Nukleonika, 2015, 60, 783-787.	0.3	0
23	Influence of annealing temperature on structural and magnetic properties of MnFe ₂ O ₄ nanoparticles. Nukleonika, 2015, 60, 137-141.	0.3	7
24	Positron Annihilation in MnFe_2O_4/MCM-41 Nanocomposite. Acta Physica Polonica A, 2014, 125, 793-797.	0.2	4
25	Positron Annihilation Studies of Mesoporous Iron-Molybdenum Modified MCM-41 Silica. Acta Physica Polonica A, 2014, 125, 789-792.	0.2	0
26	The Influence of Reduction Process on the Iron-Molybdenum Nanoparticles in Modified MCM-41 Silica. Acta Physica Polonica A, 2014, 125, 846-849.	0.2	3
27	The influence of water vapour on the redox properties of Co–CeO2–ZrO2 catalysts. Catalysis Today, 2011, 176, 131-133.	2.2	2
28	Ethanol conversion in the presence of cobalt nanostructured oxides. Catalysis Today, 2011, 176, 97-102.	2.2	11
29	Selective production of hydrogen by steam reforming of bio-ethanol. Catalysis Today, 2011, 176, 28-35.	2.2	43
30	Acid–base properties of Ni–MgO–Al2O3 materials. Applied Surface Science, 2011, 257, 2875-2880.	3.1	46
31	The Synthesis and Properties of High Surface Area Fe2O3Materials. Acta Physica Polonica A, 2011, 119, 18-20.	0.2	9
32	Reduction and oxidation of a Pd/activated carbon catalyst: evaluation of effects. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 331-342.	0.8	9
33	Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol. Applied Surface Science, 2010, 256, 5551-5558.	3.1	53
34	Thermal degradation of CTAB in as-synthesized MCM-41. Journal of Thermal Analysis and Calorimetry, 2009, 96, 375-382.	2.0	68
35	Hydrogen Formation via Steam Reforming of Ethanol Over Cu/ZnO Catalyst Modified with Nickel, Cobalt and Manganese. Catalysis Letters, 2009, 128, 443-448.	1.4	10
36	Steady State Isotopic Transient Kinetic Analysis of Flameless Methane Combustion over Pd/Al2O3 and Pt/Al2O3 Catalysts. Topics in Catalysis, 2009, 52, 1085-1097.	1.3	12

#	Article	IF	Citations
37	Methane decomposition over Ni–MgO–Al2O3 catalysts. Applied Catalysis A: General, 2009, 357, 236-243.	2.2	65
38	The properties of gold catalysts precursors adsorbed onÂtheÂMCM-41 materials modified with Mn and Fe oxides. Adsorption, 2008, 14, 247-256.	1.4	6
39	The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction. Catalysis Today, 2008, 137, 397-402.	2.2	27
40	Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry. Catalysis Today, 2008, 137, 403-409.	2.2	53
41	Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications. Catalysis Today, 2008, 137, 453-459.	2.2	69
42	The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. Journal of Molecular Catalysis A, 2007, 268, 15-23.	4.8	47
43	The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Applied Catalysis B: Environmental, 2007, 75, 107-117.	10.8	117
44	Complete Oxidation of Methane over Palladium Supported on Alumina Modified with Calcium, Lanthanum, and Cerium Ions. Journal of Natural Gas Chemistry, 2007, 16, 342-348.	1.8	17
45	On the Equilibrium Nature of Thermodesorption Processes. TPD-NH3 Studies of Surface Acidity of Ni/MgOâ Al2O3 Catalysts. Langmuir, 2006, 22, 6613-6621.	1.6	13
46	FT-IR/PAS studies of the silver modified manganese oxides. European Physical Journal Special Topics, 2006, 137, 283-286.	0.2	2
47	The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catalysis Today, 2006, 114, 293-306.	2.2	53
48	Temperature removal of templating agent from MCM-41 silica materials. Thermochimica Acta, 2005, 434, 2-8.	1.2	41
49	Thermodesorption Studies of Energetic Properties of Ni/MgOâ^'Al2O3Catalysts. Determination of Adsorption Energy Distribution Functions. Langmuir, 2005, 21, 7311-7320.	1.6	11
50	Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004, 227, 282-296.	3.1	350
51	Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons. Applied Catalysis A: General, 2004, 270, 27-36.	2.2	100
52	Oxidation–reduction of Ni/Al2O3 steam reforming catalysts promoted with Mo. Applied Catalysis A: General, 2004, 274, 259-267.	2,2	19
53	Thermodesorption studies of energetic properties of nickel and nickel-molybdenum catalysts based on the statistical rate theory of interfacial transport. Applied Catalysis A: General, 2002, 224, 299-310.	2.2	20
54	Nickel-Promoted Catalysts in the Reforming of n-Butane with CO2 or H2O. Adsorption Science and Technology, 2001, 19, 455-464.	1.5	4

WOJCIECH GAC

#	Article	lF	CITATION
55	Monte Carlo study of adsorption in energetically and geometrically nonuniform slit-like pores. Thin Solid Films, 1997, 298, 22-32.	0.8	17
56	Effects of Random Quenched Impurities on Layering Transitions:  A Monte Carlo Study. Langmuir, 1996, 12, 159-169.	1.6	10
57	Effects of random quenched impurities on wetting of solids: a Monte Carlo study. Surface Science, 1994, 318, 413-420.	0.8	11
58	Influence of surface energetical heterogeneity on capillary condensation in slit-like pores: a Monte Carlo study. Surface Science, 1994, 306, 434-446.	0.8	22