Wojciech Gac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5787211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004, 227, 282-296.	3.1	350
2	The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Applied Catalysis B: Environmental, 2007, 75, 107-117.	10.8	117
3	Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons. Applied Catalysis A: General, 2004, 270, 27-36.	2.2	100
4	Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications. Catalysis Today, 2008, 137, 453-459.	2.2	69
5	Thermal degradation of CTAB in as-synthesized MCM-41. Journal of Thermal Analysis and Calorimetry, 2009, 96, 375-382.	2.0	68
6	Methane decomposition over Ni–MgO–Al2O3 catalysts. Applied Catalysis A: General, 2009, 357, 236-243.	2.2	65
7	Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction. Catalysis Today, 2020, 357, 468-482.	2.2	56
8	Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous and Mesoporous Materials, 2018, 272, 79-91.	2.2	55
9	The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catalysis Today, 2006, 114, 293-306.	2.2	53
10	Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry. Catalysis Today, 2008, 137, 403-409.	2.2	53
11	Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol. Applied Surface Science, 2010, 256, 5551-5558.	3.1	53
12	Effects of dealumination on the performance of Ni-containing BEA catalysts in bioethanol steam reforming. Applied Catalysis B: Environmental, 2018, 237, 94-109.	10.8	52
13	The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts. Journal of Molecular Catalysis A, 2007, 268, 15-23.	4.8	47
14	Acid–base properties of Ni–MgO–Al2O3 materials. Applied Surface Science, 2011, 257, 2875-2880.	3.1	46
15	Selective production of hydrogen by steam reforming of bio-ethanol. Catalysis Today, 2011, 176, 28-35.	2.2	43
16	Co/CeO2 and Ni/CeO2 catalysts for ethanol steam reforming: Effect of the cobalt/nickel dispersion on catalysts properties. Journal of Catalysis, 2021, 393, 159-178.	3.1	43
17	Temperature removal of templating agent from MCM-41 silica materials. Thermochimica Acta, 2005, 434, 2-8.	1.2	41
18	Catalytic activity of Pt species variously dispersed on hollow ZrO2 spheres in combustion of volatile organic compounds. Applied Surface Science, 2020, 513, 145788.	3.1	41

WOJCIECH GAC

#	Article	IF	CITATIONS
19	Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction. Applied Surface Science, 2018, 440, 1047-1062.	3.1	36
20	Surface State and Catalytic Performance of Ceria‣upported Cobalt Catalysts in the Steam Reforming of Ethanol. ChemCatChem, 2017, 9, 782-797.	1.8	34
21	CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies. Topics in Catalysis, 2019, 62, 524-534.	1.3	33
22	The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction. Catalysis Today, 2008, 137, 397-402.	2.2	27
23	Influence of surface energetical heterogeneity on capillary condensation in slit-like pores: a Monte Carlo study. Surface Science, 1994, 306, 434-446.	0.8	22
24	P-Arylation of secondary phosphine oxides catalyzed by nickel-supported nanoparticles. Organic Chemistry Frontiers, 2018, 5, 2079-2085.	2.3	22
25	Copper-promoted ceria catalysts for CO oxidation reaction. Catalysis Today, 2020, 355, 647-653.	2.2	21
26	Thermodesorption studies of energetic properties of nickel and nickel-molybdenum catalysts based on the statistical rate theory of interfacial transport. Applied Catalysis A: General, 2002, 224, 299-310.	2.2	20
27	Oxidation–reduction of Ni/Al2O3 steam reforming catalysts promoted with Mo. Applied Catalysis A: General, 2004, 274, 259-267.	2.2	19
28	CO 2 Methanation in Microstructured Reactors – Catalyst Development and Process Design. Chemical Engineering and Technology, 2019, 42, 2076-2084.	0.9	18
29	The state of BEA zeolite supported nickel catalysts in CO2 methanation reaction. Applied Surface Science, 2021, 564, 150421.	3.1	18
30	Monte Carlo study of adsorption in energetically and geometrically nonuniform slit-like pores. Thin Solid Films, 1997, 298, 22-32.	0.8	17
31	Complete Oxidation of Methane over Palladium Supported on Alumina Modified with Calcium, Lanthanum, and Cerium Ions. Journal of Natural Gas Chemistry, 2007, 16, 342-348.	1.8	17
32	Structural and surface changes of copper modified manganese oxides. Applied Surface Science, 2016, 370, 536-544.	3.1	17
33	The vibrational spectrum of 1,4-dioxane in aqueous solution – theory and experiment. New Journal of Chemistry, 2016, 40, 7663-7670.	1.4	16
34	On the Equilibrium Nature of Thermodesorption Processes. TPD-NH3 Studies of Surface Acidity of Ni/MgOâ~Al2O3 Catalysts. Langmuir, 2006, 22, 6613-6621.	1.6	13
35	Steady State Isotopic Transient Kinetic Analysis of Flameless Methane Combustion over Pd/Al2O3 and Pt/Al2O3 Catalysts. Topics in Catalysis, 2009, 52, 1085-1097.	1.3	12
36	Effects of random quenched impurities on wetting of solids: a Monte Carlo study. Surface Science, 1994, 318, 413-420.	0.8	11

WOJCIECH GAC

#	Article	IF	CITATIONS
37	Thermodesorption Studies of Energetic Properties of Ni/MgOâ^'Al2O3Catalysts. Determination of Adsorption Energy Distribution Functions. Langmuir, 2005, 21, 7311-7320.	1.6	11
38	Ethanol conversion in the presence of cobalt nanostructured oxides. Catalysis Today, 2011, 176, 97-102.	2.2	11
39	Effects of Random Quenched Impurities on Layering Transitions:  A Monte Carlo Study. Langmuir, 1996, 12, 159-169.	1.6	10
40	Hydrogen Formation via Steam Reforming of Ethanol Over Cu/ZnO Catalyst Modified with Nickel, Cobalt and Manganese. Catalysis Letters, 2009, 128, 443-448.	1.4	10
41	Chromium-modified zinc oxides. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1205-1215.	2.0	10
42	Investigation of the Inhibiting Role of Hydrogen in the Steam Reforming of Methanol. ChemCatChem, 2019, 11, 3264-3278.	1.8	10
43	Reduction and oxidation of a Pd/activated carbon catalyst: evaluation of effects. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101, 331-342.	0.8	9
44	Direct Conversion of Carbon Dioxide to Methane over Ceria―and Aluminaâ€5upported Nickel Catalysts for Biogas Valorization. ChemPlusChem, 2021, 86, 889-903.	1.3	9
45	The Synthesis and Properties of High Surface Area Fe2O3Materials. Acta Physica Polonica A, 2011, 119, 18-20.	0.2	9
46	Influence of annealing temperature on structural and magnetic properties of MnFe ₂ O ₄ nanoparticles. Nukleonika, 2015, 60, 137-141.	0.3	7
47	The properties of gold catalysts precursors adsorbed onÂtheÂMCM-41 materials modified with Mn and Fe oxides. Adsorption, 2008, 14, 247-256.	1.4	6
48	Impact of Hydrothermally Prepared Support on the Catalytic Properties of CuCe Oxide for Preferential CO Oxidation Reaction. Catalysts, 2022, 12, 674.	1.6	5
49	Nickel-Promoted Catalysts in the Reforming of n-Butane with CO2 or H2O. Adsorption Science and Technology, 2001, 19, 455-464.	1.5	4
50	Positron Annihilation in MnFe_2O_4/MCM-41 Nanocomposite. Acta Physica Polonica A, 2014, 125, 793-797.	0.2	4
51	The Influence of Reduction Process on the Iron-Molybdenum Nanoparticles in Modified MCM-41 Silica. Acta Physica Polonica A, 2014, 125, 846-849.	0.2	3
52	The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides. Materials Research Bulletin, 2016, 78, 36-45.	2.7	3
53	FT-IR/PAS studies of the silver modified manganese oxides. European Physical Journal Special Topics, 2006, 137, 283-286.	0.2	2
54	The influence of water vapour on the redox properties of Co–CeO2–ZrO2 catalysts. Catalysis Today, 2011, 176, 131-133.	2.2	2

WOJCIECH GAC

#	Article	IF	CITATIONS
55	Application of microemulsion method for development of methanol steam reforming Pd/ZnO catalysts. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1265-1272.	2.0	2
56	The Effects of Ce and W Promoters on the Performance of Alumina-Supported Nickel Catalysts in CO2 Methanation Reaction. Catalysts, 2022, 12, 13.	1.6	1
57	Positron Annihilation Studies of Mesoporous Iron-Molybdenum Modified MCM-41 Silica. Acta Physica Polonica A, 2014, 125, 789-792.	0.2	0
58	Study on the effect of atmospheric gases adsorbed in MnFe2O4/MCM-41 nanocomposite on ortho-positronium annihilation. Nukleonika, 2015, 60, 783-787.	0.3	0