Dachamir Hotza

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5787119/dachamir-hotza-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 5,513 331 33 h-index g-index citations papers 6,603 6.24 3.5 355 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
331	Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane. <i>Renewable Energy</i> , 2022 , 187, 237-247	8.1	O
330	Lipase immobilization on alumina membranes using a traditional and a nature-inspired method for active degradation of oil fouling. <i>Separation and Purification Technology</i> , 2022 , 287, 120527	8.3	1
329	Production and characterization of 3D-printed silica-based cellular structures. <i>Open Ceramics</i> , 2022 , 10	03/25	O
328	Membranes for separation of CO2/CH4 at harsh conditions. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 98, 104388	4.6	1
327	Inorganic membranes for in-situ separation of hydrogen and enhancement of hydrogen production from thermochemical reactions. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 160, 112124	16.2	O
326	Chemical tempering of feldspathic porcelain for dentistry applications: A review. <i>Open Ceramics</i> , 2021 , 9, 100201	3.3	0
325	Controlling efflorescence in geopolymers: A new approach. <i>Case Studies in Construction Materials</i> , 2021 , 15, e00740	2.7	2
324	Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO capture. <i>Waste Management</i> , 2021 , 136, 273-282	8.6	5
323	Membrane Surface Modification by Electrospinning, Coating, and Plasma for Membrane Distillation Applications: A State-of-the-Art Review. <i>Advanced Engineering Materials</i> , 2021 , 23, 2001456	3.5	13
322	Electrospinning of cellulose using ionic liquids: An overview on processing and applications. <i>European Polymer Journal</i> , 2021 , 147, 110283	5.2	10
321	Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. <i>Journal of Composites Science</i> , 2021 , 5, 78	3	13
320	Carbon footprint and embodied energy of a wind turbine bladeâl case study. <i>International Journal of Life Cycle Assessment</i> , 2021 , 26, 1177-1187	4.6	3
319	Tailoring asymmetric Al2O3 membranes by combining tape casting and phase inversion. <i>Journal of Membrane Science</i> , 2021 , 623, 119056	9.6	5
318	Dopant diffusion at the interface of TiO2-MnO-doped alumina/alumina layers in sintered laminates. <i>International Journal of Ceramic Engineering & Science</i> , 2021 , 3, 105-112	2	1
317	Highly enhanced adsorption and photocatalytic performance of TiO2 quantum dots synthesized by microwaves for degradation of reactive red azo dye. <i>Journal of Nanoparticle Research</i> , 2021 , 23, 1	2.3	2
316	Colloidal processing and characterization of TiO2âMnO-doped alumina/alumina slurries and tapes. <i>International Journal of Ceramic Engineering & Science</i> , 2021 , 3, 173	2	1
315	Screening method for producing suitable spray-dried HA powder for SLS application. <i>Powder Technology</i> , 2021 , 384, 62-69	5.2	4

(2020-2021)

314	Integrated process simulation of porcelain stoneware manufacturing using flowsheet simulation. <i>CIRP Journal of Manufacturing Science and Technology</i> , 2021 , 33, 473-487	3.4	1
313	Cleaner Pre-concentration of Metals from Printed Circuit Board Waste Using Novel Dense Liquid Medium Based on Sodium Silicate. <i>Waste and Biomass Valorization</i> , 2021 , 12, 4081-4087	3.2	O
312	Porous asymmetric microfiltration membranes shaped by combined alumina freeze and tape casting. <i>Journal of the European Ceramic Society</i> , 2021 , 41, 871-879	6	2
311	Zeolites-containing geopolymers obtained from biomass fly ash: Influence of temperature, composition, and porosity. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 803-815	3.8	5
310	An overview on nanostructured TiO2âdontaining fibers for photocatalytic degradation of organic pollutants in wastewater treatment. <i>Journal of Water Process Engineering</i> , 2021 , 40, 101827	6.7	14
309	Green production of cellular ceramics by emulsification of sunflower oil followed by gelcasting and starch consolidation. <i>Journal of Cleaner Production</i> , 2021 , 282, 124468	10.3	O
308	Electrospun TiO2 nanofibers for water and wastewater treatment: a review. <i>Journal of Materials Science</i> , 2021 , 56, 5428-5448	4.3	16
307	Microstructure and mechanical behavior of TiO2-MnO-doped alumina/alumina laminates. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 1047-1057	3.8	3
306	Bioleaching from Coal Wastes and Tailings: A Sustainable Biomining Alternative. <i>Environmental and Microbial Biotechnology</i> , 2021 , 203-224	1.4	1
305	Numerical and experimental study of ion exchange in porcelain tiles. <i>International Journal of Applied Ceramic Technology</i> , 2021 , 18, 1025-1032	2	2
304	High performance magnetically recoverable Fe3O4 nanocatalysts: fast microwave synthesis and photo-fenton catalysis under visible-light. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 166, 108438	3.7	5
303	Assessment of the recycling potential of stone processing plant wastes based on physicochemical features and market opportunities. <i>Journal of Cleaner Production</i> , 2021 , 319, 128678	10.3	5
302	SiOC and SiCN-based ceramic supports for catalysts and photocatalysts. <i>Microporous and Mesoporous Materials</i> , 2021 , 327, 111435	5.3	0
301	Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. <i>Carbohydrate Polymers</i> , 2021 , 272, 118472	10.3	16
300	High heating rate sintering and microstructural evolution assessment using the discrete element method. <i>Open Ceramics</i> , 2021 , 8, 100182	3.3	1
299	Gel casting of silicon nitride foams using biopolymers as gelling agents. <i>Open Ceramics</i> , 2021 , 8, 100183	3.3	2
298	Electrospun Polycaprolactone Scaffolds Using an Ionic Liquid as Alternative Solvent: Morphometric, Mechanical and Biological Properties. <i>ChemistrySelect</i> , 2020 , 5, 14050-14055	1.8	1
297	Selective Laser Sintering of Biomaterials and Composites State of the Art and Perspectives. <i>Materials Science Forum</i> , 2020 , 1012, 278-283	0.4	Ο

296	Development of new geopolymers based on stone cutting waste. <i>Construction and Building Materials</i> , 2020 , 257, 119525	6.7	15
295	Modeling the effect of the addition of alumina on structural characteristics and tensile deformation response of aluminosilicate glasses. <i>Ceramics International</i> , 2020 , 46, 21657-21666	5.1	1
294	Study of cure conditions effect on the properties of wood biomass fly ash geopolymers. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 7518-7528	5.5	11
293	Characterization of functionalized zirconia membranes manufactured by aqueous tape casting. <i>Ceramics International</i> , 2020 , 46, 16096-16103	5.1	5
292	Lipase immobilization on ceramic supports: An overview on techniques and materials. <i>Biotechnology Advances</i> , 2020 , 42, 107581	17.8	36
291	An overview and future prospects on aptamers for food safety. <i>Applied Microbiology and Biotechnology</i> , 2020 , 104, 6929-6939	5.7	19
29 0	Eco-Friendly Manufacturing of Nano-TiO2 Coated Cotton Textile with Multifunctional Properties. <i>Fibers and Polymers</i> , 2020 , 21, 90-102	2	6
289	Evaluation of the uncertainty in the measurement of nanoparticle size by dynamic light scattering. <i>Measurement Science and Technology</i> , 2020 , 31, 075005	2	1
288	Synergetic effect of photocatalysis and ozonation for enhanced tetracycline degradation using highly macroporous photocatalytic supports. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 149, 107838	3.7	26
287	Premix membrane emulsification using flat microfiltration inorganic membranes with tailored structure and composition. <i>Journal of Membrane Science</i> , 2020 , 608, 118124	9.6	7
286	Additive Manufactured Nanocomposites for Bone Tissue Engineering Applications: an Overview. <i>Materials Research</i> , 2020 , 23,	1.5	3
285	SYNTHESIS OF SPHERICAL BACTERIAL NANOCELLULOSE AS A POTENTIAL SILVER ADSORPTION AGENT FOR ANTIMICROBIAL PURPOSES. <i>Cellulose Chemistry and Technology</i> , 2020 , 54, 285-290	1.9	5
284	Enhanced catalytic performance of CuFeS2 chalcogenide prepared by microwave-assisted route for photo-Fenton oxidation of emerging pollutant in water. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104077	6.8	9
283	Silicon carbide filters and porous membranes: A review of processing, properties, performance and application. <i>Journal of Membrane Science</i> , 2020 , 610, 118193	9.6	31
282	Development of magnesium-aluminum-silicate glass-ceramics nucleated with Nb2O5. <i>International Journal of Applied Glass Science</i> , 2020 , 11, 155-169	1.8	7
281	Thermal degradation and flammability of TiO2âpolyetherimide nanocomposite fibers. <i>Polymer Bulletin</i> , 2020 , 77, 4937-4958	2.4	3
2 80	Enhanced Electrochemical Performance of Nanocellulose/PPyľCuCl2 Electrodes for All-Cellulose-Based Supercapacitors. <i>Journal of Electronic Materials</i> , 2020 , 49, 1036-1042	1.9	6
279	Are TiO2 nanoparticles safe for photocatalysis in aqueous media?. <i>Nanoscale Advances</i> , 2020 , 2, 4951-49	9601	8

278	Aerogel-Based TiO2 Stable Inks for Direct Inkjet Printing of Nanostructured Layers. <i>Advances in Materials Science and Engineering</i> , 2020 , 2020, 1-9	1.5	3	
277	Low-energy microwave synthesis and cold sintering of nanograined TiO2-Nb2O5. <i>Materials Letters</i> , 2020 , 278, 128418	3.3	2	
276	Fast-fired, nanograined titanium niobate (TiNb2O7) with enhanced dielectric properties. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2020 , 261, 114650	3.1	3	
275	Effect of environmental conditions on degradation of NOx gases by photocatalytic nanotitania-based cement mortars after long-term hydration. <i>Journal of Cleaner Production</i> , 2020 , 274, 123067	10.3	10	
274	Formation, stability and antimicrobial activity of laurel leaves essential oil (Laurus nobilis L.) particles in suspension obtained by SFEE. <i>Journal of Supercritical Fluids</i> , 2020 , 166, 105032	4.2	4	
273	RHEOLOGICAL BEHAVIOR OF A SILVER AQUEOUS NANOFLUID STABILIZED WITH AMINOSILANE-BASED SURFACTANT UNDER CONFINED FLOW. <i>Brazilian Journal of Chemical Engineering</i> , 2019 , 36, 229-237	1.7	2	
272	Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. <i>Hydrometallurgy</i> , 2019 , 184, 199-205	4	9	
271	Plasma-modified TiO2/polyetherimide nanocomposite fibers for photocatalytic degradation of organic compounds. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103213	6.8	7	
270	Properties and Applications of Morinda citrifolia (Noni): A Review. <i>Comprehensive Reviews in Food Science and Food Safety</i> , 2019 , 18, 883-909	16.4	31	
269	Early-stage materials selection based on embodied energy and carbon footprint. <i>Materials and Design</i> , 2019 , 178, 107861	8.1	35	
268	Tape casting of preceramic polymers toward advanced ceramics: A review. <i>International Journal of Ceramic Engineering & Science</i> , 2019 , 1, 21-41	2	18	
267	Asymmetric mullite membranes manufactured by phase-inversion tape casting from polymethylsiloxane and aluminum diacetate. <i>Journal of Membrane Science</i> , 2019 , 581, 421-429	9.6	8	
266	Processing and properties of tape-cast alumina/zirconia laminates composites. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 3462-3465	6	3	
265	Preparation of polyethyleneaBupported zeroaWalent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photoaBenton process. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 102963	6.8	25	
264	Biomining of iron-containing nanoparticles from coal tailings. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 7231-7240	5.7	8	
263	Enhancing Specific Capacitance and Cyclic Stability through Incorporation of MnO2 into Bacterial Nanocellulose/PPyľCuCl2 Flexible Electrodes. <i>Energy Technology</i> , 2019 , 7, 1900328	3.5	8	
262	Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. <i>Chemical Engineering Research and Design</i> , 2019 , 129, 130-137	5.5	22	
261	Effects of processing parameters on 3D structural ordering and optical properties of inverse opal photonic crystals produced by atomic layer deposition. <i>International Journal of Ceramic Engineering & Science</i> , 2019 , 1, 68-76	2	7	

260	Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. <i>Journal of Food Engineering</i> , 2019 , 262, 162-169	6	27
259	CHARACTERIZATION OF PULP AND PAPER MILL WASTE FOR THE PRODUCTION OF WASTE-BASED CEMENT. <i>Revista Internacional De Contaminacion Ambiental</i> , 2019 , 35, 237-246	1.2	7
258	Avalia® da energia incorporada e da emiss® de CO2 em recipientes para refrigerantes: PET versus vidro. <i>Engenharia Sanitaria E Ambiental</i> , 2019 , 24, 1027-1036	0.4	
257	Ancoragem da prata em substratos cerfinicos para tratamento de ĝua de consumo. <i>Ceramica</i> , 2019 , 65, 541-546	1	
256	Preparation of delafossiteâEype CuFeO2 powders by conventional and microwaveâEssisted hydrothermal routes for use as photoâEenton catalysts. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 102954	6.8	16
255	Fast microwave-assisted hydrothermal synthesis of TiNb2O7 nanoparticles. <i>International Journal of Ceramic Engineering & Science</i> , 2019 , 1, 235-240	2	3
254	Ecological footprint of biomaterials for implant dentistry: is the metal-free practice an eco-friendly shift?. <i>Journal of Cleaner Production</i> , 2019 , 213, 723-732	10.3	5
253	In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin. <i>Materials Letters</i> , 2019 , 236, 644-648	3.3	41
252	Design guidelines for titania-silica-alumina ceramics with tuned anatase to rutile transformation. <i>Ceramics International</i> , 2019 , 45, 5179-5188	5.1	3
251	Modulating the photocatalytic activity of TiO2 (P25) with lanthanum and graphene oxide. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2019 , 372, 1-10	4.7	6
250	R-curve behavior and flexural strength of zirconia-toughened alumina and partially stabilized zirconia composite laminates. <i>Ceramics International</i> , 2018 , 44, 13463-13468	5.1	9
249	Structural Refinement by the Rietveld Method on Clinkers Obtained from Waste from Pulp and Paper Mills. <i>Materials Science Forum</i> , 2018 , 912, 175-179	0.4	1
248	Cellular ceramics obtained by a combination of direct foaming of soybean oil emulsified alumina suspensions with gel consolidation using gelatin. <i>Ceramics International</i> , 2018 , 44, 2436-2445	5.1	9
247	Predicting powder densification during sintering. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 17	'3 6 -174	116
246	Tape casting of polysiloxane-derived ceramic with controlled porosity and surface properties. Journal of the European Ceramic Society, 2018 , 38, 4899-4905	6	8
245	Wastes from pulp and paper mills - a review of generation and recycling alternatives. <i>Ceramica</i> , 2018 , 64, 443-453	1	50
244	Nanostructured biocompatible ceramics and glass-ceramics 2018 , 97-118		1
243	Enhanced LSCF oxygen deficiency through hydrothermal synthesis. <i>Ceramics International</i> , 2018 , 44, 20671-20676	5.1	4

(2017-2018)

242	High-temperature stable inverse opal photonic crystals via mullite-sol-gel infiltration of direct photonic crystals. <i>Journal of the American Ceramic Society</i> , 2018 , 102, 686	3.8	О
241	Manufacturing porous ceramic materials by tape castingâl review. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 988-1001	6	116
240	Photocatalytic ceramic tiles: Challenges and technological solutions. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 1002-1017	6	29
239	BACTERICIDAL EFFECTIVENESS OF FREEZE-CAST CERAMIC FILTERS IMPREGNATED WITH SILVER NANOPARTICLES. <i>Brazilian Journal of Chemical Engineering</i> , 2018 , 35, 1267-1274	1.7	1
238	Thermal characterization of hydrated eco-friendly clinkers produced from pulp and paper mill waste. <i>Ceramica</i> , 2018 , 64, 311-317	1	1
237	One-Step Synthesis of Conductive BNC/PPyľCuCl2 Hybrid Flexible Nanocomposites by In Situ Polymerization. <i>Advances in Materials Science and Engineering</i> , 2018 , 2018, 1-5	1.5	1
236	Waste-based geopolymeric mortars with very high moisture buffering capacity. <i>Construction and Building Materials</i> , 2018 , 191, 39-46	6.7	27
235	Activated nanocarbons produced by microwave-assisted hydrothermal carbonization of Amazonian fruit waste for methane storage. <i>Materials Chemistry and Physics</i> , 2018 , 216, 42-46	4.4	16
234	Amorphous SiO2 ambigels as hosts for simulated PWR multicomponent nuclear waste. <i>Journal of Non-Crystalline Solids</i> , 2017 , 461, 67-71	3.9	1
233	Waste-containing clinkers: Valorization of alternative mineral sources from pulp and paper mills. <i>Chemical Engineering Research and Design</i> , 2017 , 109, 106-116	5.5	29
232	Influence of porous structures on O2 flux of BSCF asymmetric membranes. <i>Separation and Purification Technology</i> , 2017 , 175, 164-169	8.3	19
231	A novel route for manufacturing asymmetric BSCF-based perovskite structures by a combined tape and freeze casting method. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 5249-5257	6	16
230	Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles. <i>Ceramics International</i> , 2017 , 43, 11986-11991	5.1	22
229	Porous Cu/YSZ anodes processed by aqueous tape casting for IT-SOFC. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 5233-5237	6	13
228	Bentonites functionalized by impregnation with TiO2, Ag, Pd and Au nanoparticles. <i>Applied Clay Science</i> , 2017 , 146, 1-6	5.2	18
227	An estimate of quartz content and particle size in porcelain tiles from young modulus measurements. Ceramics International, 2017, 43, 2233-2238	5.1	7
226	Ni(OH)2 Aerogels Incorporated with Polypyrrole as Electrodes for Supercapacitors. <i>Journal of Electronic Materials</i> , 2017 , 46, 5232-5239	1.9	9
225	Processing of Copper Based Foil Hardened with Zirconia by Non-Deformation Method. <i>Materials Research</i> , 2017 , 20, 835-842	1.5	2

224	Transparent ceramic and glass-ceramic materials for armor applications. <i>Ceramics International</i> , 2017 , 43, 13031-13046	5.1	43
223	Microwave-assisted synthesis and dielectric properties of Al2O3âMgAl2O4 spinel composites from ironsand. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 17131-17139	2.1	1
222	Influence of synthesis parameters on solagel transition and physical properties of Nb2O5 mesoporous ambigels. <i>Journal of Sol-Gel Science and Technology</i> , 2017 , 83, 537-544	2.3	4
221	Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 590-600	5.4	16
220	Direct coagulation casting of nano-8YSZ powder suspensions using nano-MgO as coagulating agent. <i>Ceramics International</i> , 2017 , 43, 316-323	5.1	11
219	Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb2O5-doped-TiO2. <i>Applied Surface Science</i> , 2017 , 393, 103-109	6.7	27
218	Alumina/copper foams produced by replica using a double impregnation process. <i>Advances in Applied Ceramics</i> , 2017 , 116, 85-91	2.3	2
217	Industrial Wastes as Alternative Mineral Addition in Portland Cement and as Aggregate in Coating Mortars. <i>Materials Research</i> , 2017 , 20, 358-364	1.5	6
216	Characterization of silver nanoparticles produced by biosynthesis mediated by Fusarium oxysporum under different processing conditions. <i>Bioprocess and Biosystems Engineering</i> , 2017 , 40, 12	91 ³ 7 ⁷ 30	3 ¹⁰
215	Selective Laser Sintering of Polyamide/Hydroxyapatite Scaffolds. <i>Minerals, Metals and Materials Series</i> , 2017 , 95-103	0.3	O
214	Chemical tempering of porcelain tiles. <i>Ceramics International</i> , 2016 , 42, 15199-15202	5.1	10
213	Rheological Behavior of Paraffin-Alumina Emulsions and their Microstructural Effects. <i>Materials Science Forum</i> , 2016 , 869, 85-90	0.4	1
212	Doped and undoped anatase-based plates obtained from paper templates for photocatalytic oxidation of NOX. <i>Ceramics International</i> , 2016 , 42, 12074-12083	5.1	9
211	Photocatalytic Nb2O5-doped TiO2 nanoparticles for glazed ceramic tiles. <i>Ceramics International</i> , 2016 , 42, 5113-5122	5.1	29
210	Nanocrystalline yttria-doped zirconia sintered by fast firing. <i>Materials Letters</i> , 2016 , 166, 196-200	3.3	24
209	Life cycle assessment of the production of Portland cement: a Southern Europe case study. <i>Journal of Cleaner Production</i> , 2016 , 126, 159-165	10.3	41
208	Synthesis of Ca-doped spinel by Ultrasonic Spray Pyrolysis. <i>Materials Letters</i> , 2016 , 171, 232-235	3.3	11
207	Fabrication of Ti 3 SiC 2 -based composites via three-dimensional printing: Influence of processing on the final properties. <i>Ceramics International</i> , 2016 , 42, 9557-9564	5.1	23

(2015-2016)

206	Dip coating of a carbon steel sheet with Ni reinforced TiO2 nanoparticles. <i>Materials Research</i> , 2016 , 19, 648-653	1.5	2
205	Produß e caracterizaß de uma liga Fe-Ni obtida por processamento coloidal aquoso e reaß de estado slido. <i>Revista Materia</i> , 2016 , 21, 921-929	0.8	
204	Synthesis and oxygen transport properties of La2â\(\mathbb{I}\)SryNi1â\(\mathbb{M}\)moxO4+\(\mathbb{I}\)Solid State Ionics, 2016 , 292, 38-4	143.3	13
203	Current developments in reversible solid oxide fuel cells. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 61, 155-174	16.2	178
202	Life cycle assessment of the production of cement: A Brazilian case study. <i>Journal of Cleaner Production</i> , 2016 , 137, 1293-1299	10.3	59
201	Incremento de resistencia mecflica en materiales de gres porcelflico a partir de tratamiento qufinico de intercambio iflico. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2016 , 55, 197-201	1.9	4
200	Influencia de las tensiones residuales sobre el comportamiento frente al corte del gres porcelfiico esmaltado. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2016 , 55, 143-151	1.9	2
199	Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. <i>Energy and Buildings</i> , 2016 , 127, 980-990	7	18
198	Multilayered ceramic composites âla review. Advances in Applied Ceramics, 2015, 114, 127-138	2.3	29
197	Development of mortars containing superabsorbent polymer. <i>Construction and Building Materials</i> , 2015 , 95, 575-584	6.7	36
196	Advances and Challenges for the Co-processing in Latin American Cement Industry 2015 , 9, 571-577		15
195	Cellular ceramics by gelatin gelcasting of emulsified suspensions with sunflower oil. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 2577-2585	6	20
194	Microstructure and flexural properties of multilayered fiber-reinforced oxide composites fabricated by a novel lamination route. <i>Ceramics International</i> , 2015 , 41, 7836-7846	5.1	17
193	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications. <i>Materials Science Forum</i> , 2015 , 828-829, 165-171	0.4	4
192	Mechanical tests and simulation on load sharing in alumina fiber bundles. <i>Ceramics International</i> , 2015 , 41, 13257-13263	5.1	2
191	ZrO 2 fiber-matrix interfaces in alumina fiber-reinforced model composites. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 1593-1598	6	18
190	Synthesis of biomorphic paper-derived anatase. <i>Materials Letters</i> , 2015 , 141, 275-279	3.3	6
189	Environmental performance and energy assessment of fired-clay brick masonry 2015 , 447-459		2

188	Evaluation of resistances to fluid flow in fibrous ceramic medium. <i>Applied Mathematical Modelling</i> , 2015 , 39, 7197-7210	4.5	4
187	Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering. <i>International Materials Reviews</i> , 2015 , 60, 353-375	16.1	27
186	The influence of TiO2 nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars. <i>Construction and Building Materials</i> , 2015 , 75, 315-330	6.7	16
185	Otimiza B reolgica de suspens B s aquosas de 🏻 ido de ferro (III). <i>Revista Materia</i> , 2015 , 20, 185-192	0.8	1
184	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications 2015 , 425-429		
183	The co-processing operation in Latin America and Europe cement industries 2015 , 335-340		
182	Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid. <i>SpringerPlus</i> , 2014 , 3, 48		12
181	Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. <i>Journal of Thermal Analysis and Calorimetry</i> , 2014 , 117, 269-275	4.1	23
180	TiO2 nanoparticulated LZSA glass-ceramic matrix composites. <i>Ceramics International</i> , 2014 , 40, 9535-95	491	2
179	Formulation of ceramic engobes with recycled glass using mixture design. <i>Journal of Cleaner Production</i> , 2014 , 69, 243-249	10.3	18
178	The influence of TiO2 and ZnO powder mixtures on photocatalytic activity and rheological behavior of cement pastes. <i>Construction and Building Materials</i> , 2014 , 65, 191-200	6.7	33
177	Particle-Filled Polysilazane Coatings for Steel Protection. <i>Advanced Materials Research</i> , 2014 , 975, 149-	1535	2
176	Biogeneration of Silica Nanoparticles from Rice Husk Ash UsingFusarium oxysporumin Two Different Growth Media. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 6959-6965	3.9	20
175	Effect of reduction of thickness on microstructure and properties of porcelain stoneware tiles. <i>Ceramics International</i> , 2014 , 40, 14693-14699	5.1	18
174	The effect of non-ionic porous domains on supported Ba0.5Sr0.5Co0.8Fe0.2O3âlmembranes for O2 separation. <i>Journal of Membrane Science</i> , 2014 , 454, 382-389	9.6	13
173	Colloidal processing of highly concentrated aqueous copper suspensions. <i>Powder Technology</i> , 2014 , 256, 540-544	5.2	3
172	Effects of processing parameters on cellular ceramics obtained by paraffin emulsified suspensions. <i>Ceramics International</i> , 2014 , 40, 9045-9053	5.1	18
171	Forming of thin porcelain tiles: A comparison between tape casting and dry pressing. <i>Ceramics International</i> , 2014 , 40, 3761-3767	5.1	11

170	Microchanneled biomorphic AlN-coated Al2O3 by pressureless infiltrationâlitridation. <i>Ceramics International</i> , 2014 , 40, 12567-12571	5.1	2
169	Influence of red mud addition on rheological behavior and hardened properties of mortars. <i>Construction and Building Materials</i> , 2014 , 65, 84-91	6.7	27
168	Manufacturing of Porous Polycaprolactone Prepared with Different Particle Sizes and Infrared Laser Sintering Conditions: Microstructure and Mechanical Properties. <i>Advances in Mechanical Engineering</i> , 2014 , 6, 640496	1.2	10
167	Mechanical Behavior of Yttria-Stabilized Zirconia Aqueous Cast Tapes and Laminates. <i>Journal of Ceramics</i> , 2014 , 2014, 1-5		5
166	Current developments of mixed conducting membranes on porous substrates. <i>Materials Research</i> , 2014 , 17, 242-249	1.5	11
165	Blindagens cerfhicas para aplicales balliticas: uma revisõ. <i>Ceramica</i> , 2014 , 60, 323-331	1	8
164	Argilas adsorventes aplicadas Œlarifica® de Œos vegetais. <i>Ceramica</i> , 2014 , 60, 171-178	1	1
163	Obtenő de granilhas por gelificaő de suspensês cerfhicas. <i>Ceramica</i> , 2014 , 60, 457-464	1	2
162	Steady State Thermal Behaviour of Ceramic Wick Structure for Application in Two Phase Heat Transfer Devices. <i>Advanced Materials Research</i> , 2014 , 1082, 302-308	0.5	
161	Multilayered Fiber-Reinforced Oxide Composites Produced by Lamination of Thermoplastic Prepregs. <i>Advances in Science and Technology</i> , 2014 , 89, 145-150	0.1	1
160	Ceramic Tiles with Photovoltaic Properties. <i>Materials Science Forum</i> , 2014 , 798-799, 312-316	0.4	1
159	Rice Husk Ash Impregnated with Silver Nanoparticles for Water Purification. <i>Materials Science Forum</i> , 2014 , 798-799, 727-731	0.4	O
158	Effect of the Addition of TiO2 Nanoparticles on the Sinterability of a Glass Belonging to the LZSA Glass-Ceramic System. <i>Materials Science Forum</i> , 2014 , 775-776, 92-96	0.4	1
157	Alumina Matrix Composites Produced by Water-Based Tape Casting. <i>Materials Science Forum</i> , 2014 , 775-776, 562-565	0.4	
156	Numerical Evaluation of a Light-Gas Gun Facility for Impact Test. <i>Modelling and Simulation in Engineering</i> , 2014 , 2014, 1-6	1.3	2
155	Characterization of Young?s modulus and fracture toughness of albite glass by different techniques. <i>Ceramics International</i> , 2014 , 40, 10893-10899	5.1	3
154	Effect of the Processing Steps on Cactus Juice Production. Food and Bioprocess Technology, 2014, 7, 99	0-51-000	0 8
153	Materials Research - Ibero-american Journal of Materials. <i>Materials Research</i> , 2014 , 17, 1-1	1.5	5

152	Superfüies fotocatalticas de titüia em substratos certinicos. Parte II: substratos, processos de depositi e tratamento timico. <i>Ceramica</i> , 2014 , 60, 1-9	1	5
151	Reologia de suspensês de precursor vitrocerênico do sistema LiO2-ZrO2-SiO2-Al2O3. <i>Ceramica</i> , 2014 , 60, 149-153	1	1
150	Processing and characterization of CaTiO3 perovskite ceramics. <i>Processing and Application of Ceramics</i> , 2014 , 8, 53-57	1.4	13
149	Preparation of ceramic nanoparticles via cellulose-assisted glycine nitrate process: a review. <i>RSC Advances</i> , 2013 , 3, 2873-2884	3.7	31
148	Directed photoluminescent emission of ZnO tetrapods on biotemplated Al2O3. <i>Optical Materials</i> , 2013 , 36, 562-567	3.3	8
147	Using Recycled Ceramics to make new Triaxial Ceramics. <i>Refractories and Industrial Ceramics</i> , 2013 , 54, 243-250	1.1	1
146	Planar Solid Oxide Fuel Cells Using PSZ, Processed by Sequential Aqueous Tape Casting and Constrained Sintering. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 3075-3083	3.8	5
145	Fracture toughness and temperature dependence of Youngß modulus of a sintered albite glass. <i>Journal of Non-Crystalline Solids</i> , 2013 , 363, 70-76	3.9	10
144	Aqueous tape casting of micro and nano YSZ for SOFC electrolytes. <i>Ceramics International</i> , 2013 , 39, 8279-8285	5.1	33
143	Aqueous colloidal processing of carriers for delivering silica nanoparticles in iron matrix nanocomposites. <i>Materials Research Bulletin</i> , 2013 , 48, 2430-2436	5.1	6
142	Control of Porosity and Permeability of Wood by Fungi Action for Biotemplating of SiC. <i>Journal of Wood Chemistry and Technology</i> , 2013 , 33, 33-43	2	1
141	Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. <i>Composites Part B: Engineering</i> , 2013 , 44, 40-47	10	54
140	Influence of coatings on microstructure and mechanical properties of preceramic paper-derived porous alumina substrates. <i>Journal of Materials Processing Technology</i> , 2013 , 213, 308-313	5.3	9
139	Deflocculant consumption of clay suspensions as a function of specific surface area and cation exchange capacity. <i>Clay Minerals</i> , 2013 , 48, 473-480	1.3	O
138	Modelling the Influence of Manufacturing Process Variables on Dimensional Changes of Porcelain Tiles. <i>Advances in Materials Science and Engineering</i> , 2013 , 2013, 1-12	1.5	4
137	Modelling of Ballistic Impact over a Ceramic-Metal Protection System. <i>Advances in Materials Science and Engineering</i> , 2013 , 2013, 1-8	1.5	5
136	Dense YSZ Laminates Obtained by Aqueous Tape Casting and Calendering. <i>Advanced Engineering Materials</i> , 2013 , 15, n/a-n/a	3.5	1
135	The effect of microstructural features on the mechanical properties of LZSA glass-ceramic matrix composites. <i>Ceramica</i> , 2013 , 59, 351-359	1	5

134	Superfüies fotocatalticas de tittia em substratos certhicos: Parte I: Stitese, estrutura e fotoatividade. <i>Ceramica</i> , 2013 , 59, 620-632	1	14
133	Processing and Characterization of Yttria-Stabilized Zirconia Foams for High-Temperature Applications. <i>Journal of Ceramics</i> , 2013 , 2013, 1-8		7
132	Cintica de sinterizacifi y transporte de masa en engobes certhicos. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2013 , 52, 237-241	1.9	1
131	Effect of the particulate size on mechanical properties of aluminaâZirconia composites. <i>Materials Letters</i> , 2012 , 82, 88-90	3.3	7
130	Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. <i>Materials Science & Description of the hardened Properties, Microstructure and Processing</i> , 2012 , 532, 354-361	5.3	163
129	Numerical Simulation of the Fast Firing of Alumina in a Box Furnace. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 3750-3757	3.8	4
128	Combining mineral and clay-based wastes to produce porcelain-like ceramics: An exploratory study. <i>Applied Clay Science</i> , 2012 , 69, 50-57	5.2	16
127	RBMAO: A Novel Route for Porous Matrix Composites. <i>Materials Science Forum</i> , 2012 , 727-728, 568-573	3 0.4	1
126	Production of Oxide Ceramic Matrix Composites by a Prepreg Technique. <i>Materials Science Forum</i> , 2012 , 727-728, 556-561	0.4	7
125	Modeling of Ceramic Oxide Fiber Bundles Mechanical Properties. <i>Materials Science Forum</i> , 2012 , 727-728, 574-580	0.4	1
124	Fabricacifi y caracterizacifi de espumas de alfinina para aplicacifi en quemadores porosos radiantes. <i>Revista Materia</i> , 2012 , 17, 973-987	0.8	1
123	Biotransformaß da cinza da casca de arroz em nanopartßulas de slica mediante Fusarium oxysporum. <i>Revista Materia</i> , 2012 , 17, 946-954	0.8	3
122	Efeito das propriedades dos esmaltes e engobes sobre a curvatura de revestimentos cerínicos. <i>Ceramica</i> , 2012 , 58, 118-125	1	2
121	Produß e caracterizaß de espumas cerfhicas obtidas a partir de lodo de anodizaß de alumßio. <i>Quimica Nova</i> , 2012 , 35, 143-148	1.6	6
120	Protective Coatings for Porcelain Insulators. Recent Patents on Corrosion Science, 2012, 2, 22-29		
119	Fiber-Matrix Compatibility in an All-Oxide Ceramic Composite with RBAO Matrix. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 159-164	3.8	19
118	Crystallisation Kinetics of alspodumene-Based Glass Ceramic. Advances in Materials Science and Engineering, 2012, 2012, 1-8	1.5	18
117	Development of Alternative Glass Ceramic Seal for a Planar Solid Oxide Fuel Cell. <i>Advances in Materials Science and Engineering</i> , 2012 , 2012, 1-6	1.5	2

116	Life Cycle Assessment of Ceramic Bricks. <i>Materials Science Forum</i> , 2012 , 727-728, 815-820	0.4	7
115	Effect of Mechanical Activation on Microstructure and Mechanical Properties of Aqueous Colloidal Processed Nickel Metal Matrix Nanocomposites. <i>Materials Science Forum</i> , 2012 , 727-728, 195-199	0.4	1
114	Manufacture and Characterization of Alumina Ceramic Foams for Porous Burners. <i>Materials Science Forum</i> , 2012 , 727-728, 663-668	0.4	1
113	8YSZ Tapes Produced by Aqueous Tape Casting. <i>Materials Science Forum</i> , 2012 , 727-728, 752-757	0.4	7
112	Characterization of SOFCS: A Crystallographic Analysis and First Steps towards an Impedance Spectroscopy Approach. <i>Materials Science Forum</i> , 2012 , 727-728, 769-774	0.4	
111	Fiber-Matrix Compatibility in LZSA Glass-Ceramic Matrix Composites. <i>Materials Science Forum</i> , 2012 , 727-728, 562-567	0.4	
110	Extracellular Synthesis of Silica Oxide Particles by Fusarium oxysporum from Rice Husk Ash. <i>Materials Science Forum</i> , 2012 , 727-728, 1153-1157	0.4	4
109	Relationship between Rheological Behaviour and Final Structure of Al2O3 and YSZ Foams Produced by Replica. <i>Advances in Materials Science and Engineering</i> , 2012 , 2012, 1-9	1.5	11
108	Rheological Study of Iron Oxide Reinforced by Ceramic Nanoparticles. <i>Materials Science Forum</i> , 2012 , 727-728, 625-628	0.4	
107	Modelizaciñ mecñica del enfriamiento rpido en sistemas tipo gres porcelnico. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2012 , 51, 95-102	1.9	4
106	Laminated object manufacturing of LZSA glass-ceramics. Rapid Prototyping Journal, 2011, 17, 424-428	3.8	30
105	Measuring the plasticity of clays: A review. <i>Applied Clay Science</i> , 2011 , 51, 1-7	5.2	112
104	Modelo matemEico aplicado ao processo de extrusB de argilas. <i>Ceramica</i> , 2011 , 57, 180-184	1	
103	Interfaces fracas em compEitos de matriz cerEnica de alumina/alumina. <i>Revista Materia</i> , 2011 , 16, 788-79	94 .8	2
102	Building a Sintering Front through Fast Firing. <i>International Journal of Applied Ceramic Technology</i> , 2011 , 8, 1486-1493	2	16
101	Rheological and Structural Characterization of NiâBiO2 Nanocomposites Produced by Aqueous Colloidal Processing. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4179-4183	3.8	7
100	Synthesis and characterization of hematite pigment obtained from a steel waste industry. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1307-13	12.8	38
99	Influence of composition on mechanical behaviour of porcelain tile. Part III: Effect of the cooling rate of the firing cycle. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 3330-3336	5.3	14

98	Effect of diatomite addition on fresh and hardened properties of mortars investigated through mixture experiments. <i>Advances in Applied Ceramics</i> , 2011 , 110, 142-150	2.3	10
97	Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars. <i>Construction and Building Materials</i> , 2011 , 25, 163-170	6.7	58
96	Formulations of sulfobelite cement through design of experiments. <i>Construction and Building Materials</i> , 2011 , 25, 3410-3416	6.7	33
95	Evaluation of permeability of ceramic wick structures for two phase heat transfer devices. <i>Applied Thermal Engineering</i> , 2011 , 31, 1076-1081	5.8	24
94	Solutions for Impact over Aerospace Protection. Key Engineering Materials, 2011, 488-489, 25-28	0.4	4
93	Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete. <i>Advances in Civil Engineering</i> , 2010 , 2010, 1-6	1.3	6
92	Processamento e caracteriza ö de espumas vitrocer ï nicas do sistema sncp (Sio2-Na2o-Cao-P2 O5). <i>Quimica Nova</i> , 2010 , 33, 598-602	1.6	3
91	Comportamento reolĝico de pastas de cimento com adi l i de slica ativa, nanosslica e dispersante policarboxlico. <i>Revista Materia</i> , 2010 , 15, 12-20	0.8	4
90	Measuring and Modeling the Plasticity of Clays. Materials Research, 2010, 13, 395-399	1.5	17
89	Uso de pronomes no texto "Sendbrief von Dolmetschen" de Martinho Lutero. <i>Revista Brasileira De Linguistica Aplicada</i> , 2010 , 10, 625-639	0.2	
88	Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars. <i>Advances in Applied Ceramics</i> , 2010 , 109, 104-110	2.3	31
87	Production of Foundry Filters Using Al2O3 from the Al-Anodizing Process. <i>Advances in Science and Technology</i> , 2010 , 62, 119-124	0.1	1
86	Rheological characterisation of cement pastes with nanosilica, silica fume and superplasticiser additions. <i>Advances in Applied Ceramics</i> , 2010 , 109, 213-218	2.3	14
85	New Silicate Glass-Ceramic Materials and Composites. <i>Advances in Science and Technology</i> , 2010 , 68, 1-1	120.1	3
84	Sand dollar skeleton as templates for bacterial cellulose coating and apatite precipitation. <i>Journal of Materials Science</i> , 2010 , 45, 5252-5256	4.3	8
83	Influence of composition on mechanical behaviour of porcelain tile. Part I: Microstructural characterization and developed phases after firing. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 1730-1735	5.3	31
82	Corrugated glassâवeramics from LZSA cast tapes. <i>Journal of Materials Processing Technology</i> , 2010 , 210, 1556-1561	5.3	6
81	Influence of composition on mechanical behaviour of porcelain tile. Part II: Mechanical properties and microscopic residual stress. <i>Materials Science & Description of the Properties A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 1736-1743	5.3	23

80	Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. <i>Construction and Building Materials</i> , 2010 , 24, 1432-1437	6.7	151
79	Prototipagem rpida de pilhas a combustuel de aido sudo. <i>Revista Materia</i> , 2009 , 14, 1101-1113	0.8	1
78	Effect of Nano-Al2O3 Addition on the Densification of YSZ Electrolytes. <i>Journal of Nano Research</i> , 2009 , 6, 115-122	1	8
77	Influence of added nanosilica and/or silica fume on fresh and hardened properties of mortars and cement pastes. <i>Advances in Applied Ceramics</i> , 2009 , 108, 418-428	2.3	27
76	Microwave-assisted hydrothermal carbonization of lignocellulosic materials. <i>Materials Letters</i> , 2009 , 63, 2707-2709	3.3	60
75	ZrO2 foams for porous radiant burners. <i>Journal of Materials Science</i> , 2009 , 44, 3466-3471	4.3	11
74	Colloidal Processing of Glassateramics for Laminated Object Manufacturing. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 1186-1191	3.8	24
73	Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 1039-1046	6	46
72	Temperature effect on the rheological behavior of carrot juices. <i>Journal of Food Engineering</i> , 2009 , 92, 269-274	6	54
71	Extruded ZrSiO4 particulate-reinforced LZSA glassâlleramics matrix composite. <i>Journal of Materials Processing Technology</i> , 2009 , 209, 1134-1142	5.3	13
70	Flexible polyurethane foams as templates for cellular glassâderamics. <i>Journal of Materials Processing Technology</i> , 2009 , 209, 5313-5318	5.3	9
69	Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. <i>Construction and Building Materials</i> , 2009 , 23, 2487-2491	6.7	425
68	Mortar composition defined according to rheometer and flow table tests using factorial designed experiments. <i>Construction and Building Materials</i> , 2009 , 23, 3107-3111	6.7	29
67	Caracteriza ß de cinza obtida por combust ß de casca de arroz em reator de leito fluidizado. <i>Quimica Nova</i> , 2009 , 32, 1110-1114	1.6	11
66	Processamento e caracteriza ® de filtros cerfhicos fibrosos. <i>Ceramica</i> , 2009 , 55, 318-325	1	3
65	Laminated Object Manufacturing (LOM) of glass ceramics substrates for LTCC applications 2009,		1
64	Use of Aggregates from Recycled Concrete Mixer Trucks Waste in Concrete. <i>Materials Science Forum</i> , 2008 , 591-593, 854-859	0.4	
63	An Optimisation of Scrap Agate Powder Contents in Triaxial Ceramic Bodies Using Mathematical and Statistical Strategies. <i>Materials Science Forum</i> , 2008 , 591-593, 679-684	0.4	2

(2006-2008)

62	Caracteriza º de bauxita ativada antes e depois da satura º com leo mineral isolante. <i>Quimica Nova</i> , 2008 , 31, 1165-1169	1.6	2
61	Stitese do pigmento certinico verde vittia (Ca3Cr2Si3O12) a partir de CaCO3, Cr2O3 e SiO2. <i>Quimica Nova</i> , 2008 , 31,	1.6	3
60	Recobrimentos polimficos hidrofficos sobre isoladores elfricos de porcelana. <i>Revista Materia</i> , 2008 , 13, 624-635	0.8	3
59	Predicting porosity content in triaxial porcelain bodies as a function of raw materials contents. <i>Journal of Materials Science</i> , 2008 , 43, 696-701	4.3	11
58	Microstructure and properties of LZSA glass-ceramic foams. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2008 , 476, 89-97	5.3	37
57	Analyses of the fundamental parameters of cold die compaction of powder metallurgy. <i>Journal of Materials Processing Technology</i> , 2008 , 199, 417-424	5.3	30
56	LZSA glass-ceramic laminates: Fabrication and mechanical properties. <i>Journal of Materials Processing Technology</i> , 2008 , 206, 194-201	5.3	29
55	Influence of macroscopic residual stresses on the mechanical behavior and microstructure of porcelain tile. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 2463-2469	6	22
54	Analysis of the development of microscopic residual stresses on quartz particles in porcelain tile. <i>Journal of the European Ceramic Society</i> , 2008 , 28, 2629-2637	6	27
53	Fuel cells development and hydrogen production from renewable resources in Brazil. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 4915-4935	6.7	82
52	Decomposi B tr̂mica de espumas de poliuretano para fabrica B de vitrocer B nica celular de Li2O-ZrO2-SiO2-Al2O3 (LZSA). <i>Quimica Nova</i> , 2007 , 30, 1104-1107	1.6	7
51	Potable water filtration sludge: Use as set retarder in one-coat plastering mortars. <i>Construction and Building Materials</i> , 2007 , 21, 646-653	6.7	14
50	Influencia del enfriamiento de la etapa de coccifi sobre las propiedades mecfiicas del gres porcelfiico. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2007 , 46, 163-170	1.9	7
49	Roll Pressed LZSA Glass-Ceramics. Advances in Science and Technology, 2006 , 45, 442-446	0.1	10
48	Using Experiments Design to Model the Effect of Raw Materials on the Sintering and Technological Properties of Brick Compositions. <i>Materials Science Forum</i> , 2006 , 514-516, 1424-1428	0.4	
47	Effects of Raw Materials on the Technological Properties of Brick Compositions Using a Statistical Design Approach. <i>Materials Science Forum</i> , 2006 , 530-531, 486-491	0.4	1
46	Biomorphic Ceramics as Porous Supports for Zeolite Coating. <i>Advances in Science and Technology</i> , 2006 , 45, 819-828	0.1	3
45	Estudo comparativo entre slica obtida por lixlia lida da casca de arroz e slica obtida por tratamento traico da cinza de casca de arroz. <i>Quimica Nova</i> , 2006 , 29, 1175	1.6	30

44	Rheology of Star Fruit Pulp (Averrhoa Carambola L.). Applied Rheology, 2006 , 16, 26-31	1.2	3
43	Properties of Triaxial Porcelain Bodies: Interpretation of Statistical Modeling. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3356-3365	3.8	32
42	Processing of Cellular Glass Ceramics. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 3373-3378	3.8	16
41	Ceramic formulations prepared with industrial wastes and natural sub-products. <i>Ceramics International</i> , 2006 , 32, 173-179	5.1	62
40	Effect of marble and granite sludge in clay materials. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 419, 306-309	5.3	94
39	Vitrocerfhicas porosas do sistema LZSA utilizando resfluos orgflicos como agentes formadores de poros DOI: 10.5585/exacta.v4i2.757. <i>Exacta</i> , 2006 , 4, 289-296	1	3
38	Using granite rejects to aid densification and improve mechanical properties of alumina bodies. <i>Journal of Materials Science</i> , 2005 , 40, 3905-3909	4.3	20
37	UtilizaB do subproduto da recuperaB metlica de esclias de aBs inoxidNeis na slitese de pigmentos cerlicos; caracterizaB da matria-prima. <i>Ceramica</i> , 2005 , 51, 111-116	1	5
36	Deflocula B de massas cer E nicas triaxiais obtidas a partir do delineamento de misturas. <i>Ceramica</i> , 2005 , 51, 336-342	1	3
35	Sintering of a Clay Material with Granite and Marble Reject. <i>Materials Science Forum</i> , 2005 , 498-499, 558	3-5.43	
35	Sintering of a Clay Material with Granite and Marble Reject. <i>Materials Science Forum</i> , 2005 , 498-499, 558 Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science Forum</i> , 2005 , 498-499, 447-452	3- 5.6 3	3
	Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science</i>	<u>'</u>	3
34	Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science Forum</i> , 2005 , 498-499, 447-452 Wet Processing of Triaxial Ceramics Using a Mixture Design Approach. <i>Materials Science Forum</i> ,	0.4	3
34	Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science Forum</i> , 2005 , 498-499, 447-452 Wet Processing of Triaxial Ceramics Using a Mixture Design Approach. <i>Materials Science Forum</i> , 2005 , 498-499, 476-481 Methodology for Prediction of Desired Mechanical Properties as a Function of Mixture	0.4	2
34 33 32	Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science Forum</i> , 2005 , 498-499, 447-452 Wet Processing of Triaxial Ceramics Using a Mixture Design Approach. <i>Materials Science Forum</i> , 2005 , 498-499, 476-481 Methodology for Prediction of Desired Mechanical Properties as a Function of Mixture Components. <i>Materials Science Forum</i> , 2005 , 498-499, 459-463 Using Experiments Design to Model Linear Firing Shrinkage of Triaxial Ceramic Bodies. <i>Materials</i>	0.4	
34 33 32 31	Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science Forum</i> , 2005 , 498-499, 447-452 Wet Processing of Triaxial Ceramics Using a Mixture Design Approach. <i>Materials Science Forum</i> , 2005 , 498-499, 476-481 Methodology for Prediction of Desired Mechanical Properties as a Function of Mixture Components. <i>Materials Science Forum</i> , 2005 , 498-499, 459-463 Using Experiments Design to Model Linear Firing Shrinkage of Triaxial Ceramic Bodies. <i>Materials Science Forum</i> , 2005 , 498-499, 430-435	0.4	2
34 33 32 31 30	Clays from Southern Brazil: Physical, Chemical and Mineralogical Characterization. <i>Materials Science Forum</i> , 2005 , 498-499, 447-452 Wet Processing of Triaxial Ceramics Using a Mixture Design Approach. <i>Materials Science Forum</i> , 2005 , 498-499, 476-481 Methodology for Prediction of Desired Mechanical Properties as a Function of Mixture Components. <i>Materials Science Forum</i> , 2005 , 498-499, 459-463 Using Experiments Design to Model Linear Firing Shrinkage of Triaxial Ceramic Bodies. <i>Materials Science Forum</i> , 2005 , 498-499, 430-435 LZSA glass ceramic foams prepared by replication process. <i>Advances in Applied Ceramics</i> , 2005 , 104, 22-Otimiza® da resist®cia mecinica de corpos cerinicos em fun® de mathias-primas e restri®s	0.4 0.4 0.4 0.4	38

26	Optimizacifi de la resistencia mecfiica y densidad de cerfhicas en verde a travŝ del dise ô de mezclas. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2005 , 44, 53-58	1.9	3
25	Determination of composition of pozzolanic waste mixtures with optimized compressive strength. <i>Materials Research</i> , 2004 , 7, 373-375	1.5	2
24	Enhancing the properties of ceramic products through mixture design and response surface analysis. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 375-379	6	27
23	Using statistical techniques to model the flexural strength of dried triaxial ceramic bodies. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 2813-2818	6	36
22	Simultaneous optimization of linear firing shrinkage and water absorption of triaxial ceramic bodies using experiments design. <i>Ceramics International</i> , 2004 , 30, 917-922	5.1	53
21	Mixture Design and Response Surface Analysis of Pozzolanic Products. <i>Materials Science Forum</i> , 2003 , 416-418, 537-542	0.4	4
20	Processing and Characterization of Active Silica Obtained from Rice Husk Ash. <i>Materials Science Forum</i> , 2003 , 416-418, 531-536	0.4	
19	Quantitative Phase Analysis of Ceramic Raw Materials Using a Non-Negative Least Squares Routine. <i>Materials Science Forum</i> , 2003 , 416-418, 748-752	0.4	
18	A modified model for the viscosity of ceramic suspensions. <i>Ceramics International</i> , 2002 , 28, 731-735	5.1	32
17	Rational mineralogical analysis of ceramics. <i>Materials Letters</i> , 2002 , 52, 394-398	3.3	24
17 16	Rational mineralogical analysis of ceramics. <i>Materials Letters</i> , 2002 , 52, 394-398 Rice husk ash as an alternate source for active silica production. <i>Materials Letters</i> , 2002 , 57, 818-821	3.3	24 375
			<u>'</u>
16	Rice husk ash as an alternate source for active silica production. <i>Materials Letters</i> , 2002 , 57, 818-821 Quantitative mineralogical analysis of ceramic raw materials: An alternative approach. <i>Journal of</i>		375
16 15	Rice husk ash as an alternate source for active silica production. <i>Materials Letters</i> , 2002 , 57, 818-821 Quantitative mineralogical analysis of ceramic raw materials: An alternative approach. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1041-1042	3.3	375
16 15 14	Rice husk ash as an alternate source for active silica production. <i>Materials Letters</i> , 2002 , 57, 818-821 Quantitative mineralogical analysis of ceramic raw materials: An alternative approach. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1041-1042 Artigo revisō: colagem de folhas cerīnicas. <i>Ceramica</i> , 1997 , 43, 159-166	3.3	375 1 18
16 15 14	Rice husk ash as an alternate source for active silica production. <i>Materials Letters</i> , 2002 , 57, 818-821 Quantitative mineralogical analysis of ceramic raw materials: An alternative approach. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1041-1042 Artigo revisö: colagem de folhas cerfinicas. <i>Ceramica</i> , 1997 , 43, 159-166 Hydrophobing of aluminium nitride powders. <i>Journal of Materials Science</i> , 1995 , 30, 127-132 Review: aqueous tape casting of ceramic powders. <i>Materials Science & Ceramica A: Structural</i>	3.3 1 4.3	375 1 18 23
16 15 14 13	Rice husk ash as an alternate source for active silica production. <i>Materials Letters</i> , 2002 , 57, 818-821 Quantitative mineralogical analysis of ceramic raw materials: An alternative approach. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1041-1042 Artigo revisb: colagem de folhas cerbicas. <i>Ceramica</i> , 1997 , 43, 159-166 Hydrophobing of aluminium nitride powders. <i>Journal of Materials Science</i> , 1995 , 30, 127-132 Review: aqueous tape casting of ceramic powders. <i>Materials Science & Composition of Materials & Composition </i>	3.3 1 4.3 5.3	375 1 18 23 285

8 Modeling Densification during Fast Firing of Yttria-Stabilized Zirconia153-158

7	Aqueous Tape Casting of LZSA Glass Ceramics. <i>Ceramic Transactions</i> ,9-16	0.1	
6	Low-Temperature Sintered LZSA Cellular Glass Ceramics. Ceramic Transactions, 49-57	0.1	
5	Effect of MgO on the microstructure and properties of mullite membranes made by phase-inversion tape casting. <i>Journal of Asian Ceramic Societies</i> ,1-11	2.4	
4	Ultrafast reaction-sintering of grain size-controlled titanium niobate from TiO2 and Nb2O5. <i>International Journal of Ceramic Engineering & Science</i> ,	2	1
3	Formulation of Additives for Water-Based Tape Casting of Ceramics213-218		
2	A Non-Linear Programming Approach for Formulation of Three-Component Ceramics as a Function of Physical and Mechanical Properties219-224		
1	Characterisation of Lzsa Glass Ceramics Filters Obtained by the Replication Method. <i>Ceramic Engineering and Science Proceedings</i> ,53-59	0.1	