Luigi C Berselli

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/578634/publications.pdf
Version: 2024-02-01

Existence of Strong Solutions for Incompressible Fluids with Shear Dependent Viscosities. Journal of
$0.4 \quad 25$

12 MATHEMATICAL ANALYSIS FOR THE RATIONAL LARGE EDDY SIMULATION MODEL. Mathematical Models and Methods in Applied Sciences, 2002, 12, 1131-1152.
1.7

24

13 On the Large Eddy Simulation of the Taylorâ€"Green vortex. Journal of Mathematical Fluid Mechanics, 2005, 7, S164-S191.
0.4

24

On the regularity of the solutions to the 3D Navierâ $€$ "Stokes equations: a remark on the role of the
0.1

23

[^0]19 Analytical and Numerical Results for the Rational Large Eddy Simulation Model. Journal of
$0.4 \quad 16$
Mathematical Fluid Mechanics, 2007, 9, 44-74.
Suitable weak solutions to the 3D Navierấ"Stokes equations are constructed with the Voigt
27 Convergence analysis for a finite element approximation of a steady model for electrorheologicalfluids. Numerische Mathematik, 2016, 132, 657-689.
$0.9 \quad 12$
Global regularity for systems with <i>p</i>-structure depending on the symmetric gradient. Advances in Nonlinear Analysis, 2020, 9, 176-192.
29 Some results for the line vortex equation. Nonlinearity, 2002, 15, 1729-1746.0.611
0.6

On the Clobal Evolution of Vortex Filaments, Blobs, and Small Loops in 3D Ideal Flows.
37 Communications in Mathematical Physics, 2006, 269, 693-713.

Optimal Error Estimates for a Semi-Implicit Euler Scheme for Incompressible Fluids with Shear Dependent Viscosities. SIAM Journal on Numerical Analysis, 2009, 47, 2177-2202.
1.1

9

Horizontal Large Eddy Simulation of Stratified Mixing inÂaÂLock-Exchange System. Journal of Scientific
Computing, 2011, 49, 3-20.
Pulsatile Viscous Flows in Elliptical Vessels and Annuli: Solution to the Inverse Problem, with
40 Application to Blood and Cerebrospinal Fluid Flow. SIAM Journal on Applied Mathematics, 2014, 74 40-59.

An elementary approach to the inviscid limits for the 3D Navierấ"Stokes equations with slip boundary
41 conditions and applications to the 3D Boussinesq equations. Nonlinear Differential Equations and
Applications, 2014, 21, 149-166.
An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence
42 and uniqueness of various classes of solutions in the flat boundary case.. Discrete and Continuous Dynamical Systems - Series S, 2010, 3, 199-219.
A higher-order subfilter-scale model for large eddy simulation. Journal of Computational and Applied
Mathematics, 2003, 159, 411-430.

Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq
44 system, and MHD equations in a bounded domain. Communications on Pure and Applied Analysis, 2015,
0.48 14, 637-655.
$45 \begin{aligned} & \text { Optimal error estimate for semi-implicit space-time discretization for the equations describing } \\ & \text { incompressible generalized Newtonian fluids. IMA Journal of Numerical Analysis, 2015, 35, 680-697. }\end{aligned} \begin{aligned} & \text { New substructuring domain decomposition methods for advectionâ€"diffusion equations. Journal of } \\ & 46 \quad \begin{array}{l}\text { Computational and Applied Mathematics, 2000, 116, 201-220. }\end{array}\end{aligned}$
A note on regularity of weak solutions of the Navier-Stokes equations in Rⁿ. JapaneseJournal of Mathematics, 2002, 28, 51-60.

On the construction of suitable weak solutions to the 3D Navierâ $€^{\prime \prime}$ Stokes equations in a bounded

$$
49 \text { domain by an artificial compressibility method. Communications in Contemporary Mathematics, } 2018,
$$

| 0.6 | 7 |
| :--- | :--- | 20, 1650064.

50 Spaceâ€"time discretization for nonlinear parabolic systems with<i>p</i>-structure. IMA Journal of with applications to ensemble averages. Nonlinearity, 2019, 32, 4579-4608.

```
55 On the Boussinesq equations with anisotropic filter in a vertical pipe. Dynamics of Partial Differential
Equations, 2015, 12, 177-192.
```

$1.0 \quad 6$

On the consistency of the Rational Large Eddy Simulation model. Computing and Visualization in
1.2

5 Science, 2004, 6, 75-82.

```
On the Bardinaâ \(€^{T M}\) s Model in the Whole Space. Journal of Mathematical Fluid Mechanics, 2018, 20,
\(0.4 \quad 5\) 1335-1351.
```

Remarks on determining projections for stochastic dissipative equations. Discrete and Continuous Dynamical Systems, 1999, 5, 197-214.

Natural second-order regularity for parabolic systems with operators having \$\$(p,delta) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50

On the existence of almost-periodic solutions for the 2D dissipative Euler equations. Revista
$0.8 \quad 4$

62 On the Existence of Leray-Hopf Weak Solutions to the Navier-Stokes Equations. Fluids, 2021, 6, 42.
0.8

Analysis of fully discrete, quasi non-conforming approximations of evolution equations and
63 applications. Mathematical Models and Methods in Applied Sciences, 0, , 1-47.
1.7

On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations. Journal of Mathematical Analysis and Applications, 2020, , 124633.
0.5

3
On the uniqueness for weak solutions of steady double-phase fluids. Advances in Nonlinear Analysis,2021, 11, 454-468.
An elementary proof of uniqueness of particle trajectories for solutions of a class of shear-thinning
non-Newtonian 2D fluids. Nonlinearity, 2013, 26, 1031-1047.

Rotational Forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory. Chinese Annals of Mathematics Series B, 2021, 42, 17-40.
$0.2 \quad 2$

$$
\begin{aligned}
& \text { A note on the Eulerâ€"Voigt system in a 3D bounded domain: Propagation of singularities and absence of } \\
& \text { the boundary layer. AIMS Mathematics, 2018, 4, 1-11. }
\end{aligned}
$$

$0.7 \quad 2$

Existence and Convergence of an MHD Approximate Deconvolution Model. ESAIM: Proceedings and

73 Classical Solutions of the Divergence Equation with Dini Continuous Data. Journal of Mathematical Fluid Mechanics, 2020, 22, 1.

On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete and Continuous Dynamical Systems - Series S, 2016, 9, 53-71.

Classical solutions for the system $\$ f$ \{ext\{curl\}, $v=g\} \$$, with vanishing Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - Series S, 2019, 12, 215-229.

The Caccioppoli ultrafunctions. Advances in Nonlinear Analysis, 2019, 8, 946-978.
1.3

0

```
77 Local energy inequality., 2021, , 131-185.
```

78 On weak and strong solutions. , 2021, , 31-75.

79 Numerical construction of physically reasonable solutions., 2021, , 187-254.

Modeling error of \$ alpha \$-models of turbulence on a two-dimensional torus. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 4613.
0.5
o

81 Global energy conservation. , 2021, , 77-129.

82 Long-time behavior of the energy. , 2021, , 255-310.

Horizontal Approximate Deconvolution for Stratified Flows: Analysis and Computations. ERCOFTAC
Series, 2011, , 399-410.
0.1

0

On the regularity of solution to the time-dependent p-Stokes system. Opuscula Mathematica, 2020, 40, 49-69.

Optimal error estimate for a space-time discretization for incompressible generalized Newtonian
fluids: the Dirichlet problem. SN Partial Differential Equations and Applications, 2021, 2, 1.
0.3

0

[^0]: Analysis of a reduced-order approximate deconvolution model and its interpretation as a
 17 Navier-Stokes-Voigt regularization. Discrete and Continuous Dynamical Systems - Series B, 2016, 21,

