Thomas A Waigh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5786269/thomas-a-waigh-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71
papers

2,290
citations

25
h-index

73
ext. papers

2,716
ext. citations

5.4
avg, IF

4.84
L-index

#	Paper	IF	Citations
71	Assessing the Risk of Resistance to Cationic Biocides incorporating Realism-based and Biophysical Approaches. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2021 ,	4.2	3
70	Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. <i>ACS Applied Materials & Designed Materials & </i>	9.5	5
69	Electronics of peptide- and protein-based biomaterials. <i>Advances in Colloid and Interface Science</i> , 2021 , 287, 102319	14.3	7
68	Network organisation and the dynamics of tubules in the endoplasmic reticulum. <i>Scientific Reports</i> , 2021 , 11, 16230	4.9	2
67	A versatile route to edge-specific modifications to pristine graphene by electrophilic aromatic substitution. <i>Journal of Materials Science</i> , 2020 , 55, 10284-10302	4.3	3
66	Deciphering anomalous heterogeneous intracellular transport with neural networks. ELife, 2020, 9,	8.9	16
65	Surfactant-like peptides: From molecular design to controllable self-assembly with applications. <i>Coordination Chemistry Reviews</i> , 2020 , 421, 213418	23.2	23
64	How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria?. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 55675-55687	9.5	10
63	Aggregated Amphiphilic Antimicrobial Peptides Embedded in Bacterial Membranes. <i>ACS Applied Materials & Materials </i>	9.5	14
62	Recent advances in short peptide self-assembly: from rational design to novel applications. <i>Current Opinion in Colloid and Interface Science</i> , 2020 , 45, 1-13	7.6	46
61	Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	28
60	Enzyme-Triggered Morphological Transition of Peptide Nanostructures for Tumor-Targeted Drug Delivery and Enhanced Cancer Therapy. <i>ACS Applied Materials & Delivery and Enhanced Cancer Therapy</i> . <i>ACS Applied Materials & Delivery and Enhanced Cancer Therapy</i> . <i>ACS Applied Materials & Delivery and Enhanced Cancer Therapy</i> .	9.5	39
59	Super-Resolution Fluorescence Microscopy Study of the Production of K1 Capsules by Escherichia coli: Evidence for the Differential Distribution of the Capsule at the Poles and the Equator of the Cell. <i>Langmuir</i> , 2019 , 35, 5635-5646	4	13
58	Active Modulation of States of Prestress in Self-Assembled Short Peptide Gels. <i>Biomacromolecules</i> , 2019 , 20, 1719-1730	6.9	6
57	Reversible Thermoresponsive Peptide-PNIPAM Hydrogels for Controlled Drug Delivery. <i>Biomacromolecules</i> , 2019 , 20, 3601-3610	6.9	79
56	Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. <i>Nature Communications</i> , 2019 , 10, 4708	17.4	36
55	Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. <i>Langmuir</i> , 2018 , 34, 1827-1833	4	14

54	Non-Markovian intracellular transport with sub-diffusion and run-length dependent detachment rate. <i>PLoS ONE</i> , 2018 , 13, e0207436	3.7	8
53	Single-Molecule Study of Peptide Gel Dynamics Reveals States of Prestress. <i>Langmuir</i> , 2018 , 34, 14678-	1 <u>4</u> 689	4
52	Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) with Graphene Oxide. <i>Scientific Reports</i> , 2018 , 8, 16928	4.9	4
51	Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between Esheets. <i>Nature Communications</i> , 2018 , 9, 5118	17.4	56
50	Memory effects and LMy walk dynamics in intracellular transport of cargoes. <i>Physical Review E</i> , 2018 , 98,	2.4	16
49	The flexibility and dynamics of the tubules in the endoplasmic reticulum. Scientific Reports, 2017, 7, 164	74 9	23
48	Self-Assembly of Mesoscopic Peptide Surfactant Fibrils Investigated by STORM Super-Resolution Fluorescence Microscopy. <i>Biomacromolecules</i> , 2017 , 18, 3481-3491	6.9	21
47	Reduction of coherent artefacts in super-resolution fluorescence localisation microscopy. <i>Journal of Microscopy</i> , 2016 , 264, 375-383	1.9	10
46	Enzymatic Regulation of Self-Assembling Peptide A9K2 Nanostructures and Hydrogelation with Highly Selective Antibacterial Activities. <i>ACS Applied Materials & Activities</i> , 15093-102	9.5	58
45	Hydrogelation of the Short Self-Assembling Peptide I3QGK Regulated by Transglutaminase and Use for Rapid Hemostasis. <i>ACS Applied Materials & Material</i>	9.5	45
44	ESCRT-0 marks an APPL1-independent transit route for EGFR between the cell surface and the EEA1-positive early endosome. <i>Journal of Cell Science</i> , 2015 , 128, 755-67	5.3	16
43	Interfacial structure of immobilized antibodies and perdeuterated HSA in model pregnancy tests measured with neutron reflectivity. <i>Langmuir</i> , 2014 , 30, 5880-7	4	7
42	A combined small-angle X-ray and neutron scattering study of the structure of purified soluble gastrointestinal mucins. <i>Biopolymers</i> , 2014 , 101, 1154-64	2.2	19
41	Optical coherence tomography velocimetry of colloidal suspensions. <i>Soft Matter</i> , 2014 , 10, 8210-5	3.6	5
40	Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins. <i>PLoS ONE</i> , 2014 , 9, e10.	5 <u>3</u> , 0 2	35
39	Particle tracking microrheology of purified gastrointestinal mucins. <i>Biopolymers</i> , 2014 , 101, 366-77	2.2	79
38	Reassessment of the importance of mucins in determining sputum properties in cystic fibrosis. Journal of Cystic Fibrosis, 2014 , 13, 260-6	4.1	17
37	Reorganisation of the salivary mucin network by dietary components: insights from green tea polyphenols. <i>PLoS ONE</i> , 2014 , 9, e108372	3.7	36

36	Modes of correlated angular motion in live cells across three distinct time scales. <i>Physical Biology</i> , 2013 , 10, 036002	3	22
35	Interfacial structure and history dependent activity of immobilised antibodies in model pregnancy tests. <i>Soft Matter</i> , 2012 , 8, 9847	3.6	8
34	X-ray and neutron imaging with colloids. Current Opinion in Colloid and Interface Science, 2012, 17, 13-2	2 7.6	8
33	Shear-banding in polyacrylamide solutions revealed via optical coherence tomography velocimetry. <i>Soft Matter</i> , 2012 , 8, 11677	3.6	39
32	First-passage-probability analysis of active transport in live cells. <i>Physical Review E</i> , 2012 , 86, 031910	2.4	11
31	Roles of dynein and dynactin in early endosome dynamics revealed using automated tracking and global analysis. <i>PLoS ONE</i> , 2011 , 6, e24479	3.7	42
30	Measurement of the thickness of ultra-thin adsorbed globular protein layers with dual-polarisation interferometry: a comparison with neutron reflectivity. <i>Soft Matter</i> , 2011 , 7, 7223	3.6	15
29	The first passage probability of intracellular particle trafficking. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 3753-61	3.6	11
28	The impact and deformation of a viscoelastic drop at the air-liquid interface. <i>Journal of Colloid and Interface Science</i> , 2009 , 331, 163-73	9.3	14
27	Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. <i>Langmuir</i> , 2009 , 25, 4115-23	4	120
27 26		3.3	120
	25, 4115-23		
26	25, 4115-23 Multiple path length dual polarization interferometry. <i>Optics Express</i> , 2009 , 17, 10959-69	3.3	22
26 25	Multiple path length dual polarization interferometry. <i>Optics Express</i> , 2009 , 17, 10959-69 Intracellular microrheology of motile Amoeba proteus. <i>Biophysical Journal</i> , 2008 , 94, 3313-22 Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin.	3.3	49
26 25 24	Multiple path length dual polarization interferometry. <i>Optics Express</i> , 2009 , 17, 10959-69 Intracellular microrheology of motile Amoeba proteus. <i>Biophysical Journal</i> , 2008 , 94, 3313-22 Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. <i>Biointerphases</i> , 2008 , 3, FB36	3.3 2.9 1.8	22 49 14
26 25 24 23	Multiple path length dual polarization interferometry. <i>Optics Express</i> , 2009 , 17, 10959-69 Intracellular microrheology of motile Amoeba proteus. <i>Biophysical Journal</i> , 2008 , 94, 3313-22 Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. <i>Biointerphases</i> , 2008 , 3, FB36 Thermal fluctuations of fibres at short time scales. <i>Soft Matter</i> , 2008 , 4, 1438-1442 Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber	3.3 2.9 1.8 3.6	22491415
26 25 24 23 22	Multiple path length dual polarization interferometry. <i>Optics Express</i> , 2009 , 17, 10959-69 Intracellular microrheology of motile Amoeba proteus. <i>Biophysical Journal</i> , 2008 , 94, 3313-22 Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. <i>Biointerphases</i> , 2008 , 3, FB36 Thermal fluctuations of fibres at short time scales. <i>Soft Matter</i> , 2008 , 4, 1438-1442 Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films. <i>Applied Physics Letters</i> , 2008 , 92, 101125 Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell	3.3 2.9 1.8 3.6 3.4	22 49 14 15

(1996-2008)

18	Scattering Study of the Structure of Polystyrene Sulfonate Comb Polyelectrolytes in Solution. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 2475-2486	2.6	18
17	Narrow band optical filter in fluorescein doped boric acid glass saturable absorber thin films. <i>Optics Communications</i> , 2008 , 281, 2985-2988	2	4
16	Charge and interfacial behavior of short side-chain heavily glycosylated porcine stomach mucin. <i>Biomacromolecules</i> , 2007 , 8, 3791-9	6.9	44
15	Nanostructure of polyplexes formed between cationic diblock copolymer and antisense oligodeoxynucleotide and its influence on cell transfection efficiency. <i>Biomacromolecules</i> , 2007 , 8, 349.	3-582	24
14	Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin. <i>Biomacromolecules</i> , 2007 , 8, 3467-77	6.9	77
13	Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive Ibheet tape-forming peptides. <i>Tetrahedron</i> , 2007 , 63, 7457-7467	2.4	87
12	Dynamic light scattering and rheology studies of aqueous solutions of amphiphilic sodium maleate containing copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 774-785	2.6	24
11	Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. <i>Physical Biology</i> , 2007 , 4, 220-7	3	147
10	Adsorption of DNA onto positively charged amidine colloidal spheres and the resultant bridging interaction. <i>International Journal of Biological Macromolecules</i> , 2007 , 41, 146-53	7.9	3
9	Neutron spin echo study of the dynamics of micellar solutions of randomly sulphonated polystyrene. <i>Polymer</i> , 2007 , 48, 3930-3934	3.9	2
8	Persistence length of titin from rabbit skeletal muscles measured with scattering and microrheology techniques. <i>Biophysical Journal</i> , 2005 , 88, 4095-106	2.9	18
7	Phase separation in randomly charged polystyrene sulphonate ionomer solutions. <i>Polymer</i> , 2005 , 46, 7109-7117	3.9	7
6	Small-Angle Neutron Scattering from Peptide Nematic Fluids and Hydrogels under Shear. <i>Langmuir</i> , 2003 , 19, 4940-4949	4	15
5	Semidilute and Concentrated Solutions of a Solvophobic Polyelectrolyte in Nonaqueous Solvents. <i>Macromolecules</i> , 2001 , 34, 1973-1980	5.5	57
4	The phase transformations in starch during gelatinisation: a liquid crystalline approach. <i>Carbohydrate Research</i> , 2000 , 328, 165-76	2.9	236
3	Chiral Side-Chain Liquid-Crystalline Polymeric Properties of Starch. <i>Macromolecules</i> , 1998 , 31, 7980-798	3 4 5.5	122
2	Analysis of the Native Structure of Starch Granules with X-ray Microfocus Diffraction. <i>Macromolecules</i> , 1997 , 30, 3813-3820	5.5	115
1	Quantification of water in carbohydrate lamellae using SANS. Faraday Discussions, 1996, 103, 325	3.6	30