Cheril Tapia-Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5786022/publications.pdf

Version: 2024-02-01

166 papers 11,945 citations

58 h-index 102 g-index

170 all docs

 $\begin{array}{c} 170 \\ \text{docs citations} \end{array}$

170 times ranked

13769 citing authors

#	Article	IF	CITATIONS
1	Phosphorylated tau as a toxic agent in synaptic mitochondria: implications in aging and Alzheimer's disease. Neural Regeneration Research, 2022, 17, 1645.	1.6	18
2	Age- and Sex-Associated Glucose Metabolism Decline in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, , 1-17.	1.2	3
3	Differential Role of Sex and Age in the Synaptic Transmission of Degus (Octodon degus). Frontiers in Integrative Neuroscience, 2022, 16, 799147.	1.0	1
4	"Live together, die alone― The effect of re-socialization on behavioural performance and social-affective brain-related proteins after a long-term chronic social isolation stress. Neurobiology of Stress, 2021, 14, 100289.	1.9	12
5	Andrographolide restores glucose uptake in rat hippocampal neurons. Journal of Neurochemistry, 2021, 157, 1222-1233.	2.1	11
6	Pathologically phosphorylated tau at S396/404 (PHF-1) is accumulated inside of hippocampal synaptic mitochondria of aged Wild-type mice. Scientific Reports, 2021, 11, 4448.	1.6	37
7	A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Frontiers in Integrative Neuroscience, 2021, 15, 719076.	1.0	6
8	Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands. Cell Communication and Signaling, $2021, 19, 87$.	2.7	4
9	The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neuroscience and Biobehavioral Reviews, 2021, 128, 454-466.	2.9	8
10	Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. Journal of Medicinal Chemistry, 2021, 64, 812-839.	2.9	45
11	Disruption of Glucose Metabolism in Aged Octodon degus: A Sporadic Model of Alzheimer's Disease. Frontiers in Integrative Neuroscience, 2021, 15, 733007.	1.0	2
12	Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 1391-1414.	1.2	26
13	Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules, 2021, 26, 6531.	1.7	33
14	WNT Signaling Is a Key Player in Alzheimer's Disease. Handbook of Experimental Pharmacology, 2021, 269, 357-382.	0.9	6
15	Andrographolide promotes hippocampal neurogenesis and spatial memory in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Scientific Reports, 2021, 11, 22904.	1.6	10
16	Andrographolide Reduces Neuroinflammation and Oxidative Stress in Aged Octodon degus. Molecular Neurobiology, 2020, 57, 1131-1145.	1.9	30
17	Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns. Molecular Neurobiology, 2020, 57, 1389-1404.	1.9	14
18	Potential Role of Autonomic Dysfunction in Covid-19 Morbidity and Mortality. Frontiers in Physiology, 2020, 11, 561749.	1.3	49

#	Article	IF	Citations
19	Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics. Molecular and Cellular Oncology, 2020, 7, 1789418.	0.3	20
20	Effects of long-lasting social isolation and re-socialization on cognitive performance and brain activity: a longitudinal study in Octodon degus. Scientific Reports, 2020, 10, 18315.	1.6	28
21	Wnt Signaling Pathway Dysregulation in the Aging Brain: Lessons From the Octodon degus. Frontiers in Cell and Developmental Biology, 2020, 8, 734.	1.8	23
22	Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biology, 2020, 34, 101558.	3.9	62
23	Hormetic-Like Effects of L-Homocysteine on Synaptic Structure, Function, and $\hat{Al^2}$ Aggregation. Pharmaceuticals, 2020, 13, 24.	1.7	11
24	Evidence of Synaptic and Neurochemical Remodeling in the Retina of Aging Degus. Frontiers in Neuroscience, 2020, 14, 161.	1.4	16
25	Tau Deletion Prevents Cognitive Impairment and Mitochondrial Dysfunction Age Associated by a Mechanism Dependent on Cyclophilin-D. Frontiers in Neuroscience, 2020, 14, 586710.	1.4	14
26	Stimulation of Melanocortin Receptor-4 (MC4R) Prevents Mitochondrial Damage Induced by Binge Ethanol Protocol in Adolescent Rat Hippocampus. Neuroscience, 2020, 438, 70-85.	1.1	8
27	Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Molecular Neurobiology, 2019, 56, 3024-3037.	1.9	34
28	Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression Through Canonical Signaling. Molecular Neurobiology, 2019, 56, 1870-1882.	1.9	27
29	Molecular Basis of Neurodegeneration: Lessons from Alzheimer's and Parkinson's Diseases. , 2019, , .		2
30	Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug and Alcohol Dependence, 2019, 205, 107628.	1.6	28
31	Presymptomatic Treatment With Andrographolide Improves Brain Metabolic Markers and Cognitive Behavior in a Model of Early-Onset Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 295.	1.8	34
32	GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Molecular Neurobiology, 2019, 56, 7774-7788.	1.9	22
33	Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nature Cell Biology, 2019, 21, 755-767.	4.6	168
34	Adolescence binge alcohol consumption induces hippocampal mitochondrial impairment that persists during the adulthood. Neuroscience, 2019, 406, 356-368.	1.1	25
35	Modulating Wnt signaling at the root: Porcupine and Wnt acylation. , 2019, 198, 34-45.		65
36	lt's all about tau. Progress in Neurobiology, 2019, 175, 54-76.	2.8	134

#	Article	IF	CITATIONS
37	Wntâ€induced activation of glucose metabolism mediates the <i>inÂvivo</i> neuroprotective roles of Wnt signaling in Alzheimer disease. Journal of Neurochemistry, 2019, 149, 54-72.	2.1	49
38	Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Frontiers in Behavioral Neuroscience, 2019, 13, 288.	1.0	31
39	Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging, 2019, 11, 5924-5942.	1.4	23
40	Diterpenes and the crosstalk with the arachidonic acid pathways, relevance in neurodegeneration. Neural Regeneration Research, 2019, 14, 1705.	1.6	1
41	Neuroprotective Effects of Ferruginol, Jatrophone, and Junicedric Acid Against Amyloid-Î ² Injury in Hippocampal Neurons. Journal of Alzheimer's Disease, 2018, 63, 705-723.	1.2	8
42	Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus. Molecular Neurobiology, 2018, 55, 9169-9187.	1.9	16
43	Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. Progress in Molecular Biology and Translational Science, 2018, 153, 81-130.	0.9	68
44	Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3 \hat{l}^2 -AMPK axis. Cell Communication and Signaling, 2018, 16, 15.	2.7	36
45	Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20â€ <scp>APP</scp> transgenic and wildâ€ŧype mice. Journal of Neurochemistry, 2018, 144, 443-465.	2.1	66
46	New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-l² Peptide Aggregation and Age-Related Amyloid Pathology. Journal of Alzheimer's Disease, 2018, 66, 1145-1163.	1.2	21
47	Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biology, 2018, 18, 279-294.	3.9	60
48	Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease. Neural Regeneration Research, 2018, 13, 1705.	1.6	100
49	Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 870-883.	1.8	28
50	<scp>PPARs</scp> in the central nervous system: roles in neurodegeneration and neuroinflammation. Biological Reviews, 2017, 92, 2046-2069.	4.7	80
51	Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2017, 80, 316-328.	2.9	32
52	Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment. Molecular Neurobiology, 2017, 55, 4473-4491.	1.9	31
53	INT131 increases dendritic arborization and protects against $\hat{Al^2}$ toxicity by inducing mitochondrial changes in hippocampal neurons. Biochemical and Biophysical Research Communications, 2017, 490, 955-962.	1.0	6
54	Possible role of mitochondrial permeability transition pore in the pathogenesis of Huntington disease. Biochemical and Biophysical Research Communications, 2017, 483, 1078-1083.	1.0	31

#	Article	IF	CITATIONS
55	Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain, 2017, 140, 3252-3268.	3.7	121
56	Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication. Birth Defects Research, 2017, 109, 1623-1639.	0.8	33
57	Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plasticity, 2017, 2017, 1-25.	1.0	57
58	Wnt/TLR Dialog in Neuroinflammation, Relevance in Alzheimer's Disease. Frontiers in Immunology, 2017, 8, 187.	2.2	39
59	Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Frontiers in Aging Neuroscience, 2017, 9, 66.	1.7	26
60	Wnt Signaling Prevents the $\hat{Al^2}$ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLoS ONE, 2017, 12, e0168840.	1.1	41
61	Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons. Neural Plasticity, 2016, 2016, 1-13.	1.0	10
62	TheGî±oActivator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons. Neural Plasticity, 2016, 2016, 1-11.	1.0	9
63	Andrographolide recovers cognitive impairment in a natural model of Alzheimer's disease (Octodon) Tj ETQq $1\ 1$	0.784314	rgBT Overlo
64	Wnt-5a/Frizzled9 Receptor Signaling through the $G\hat{l}\pm 0$ - $G\hat{l}^2\hat{l}^3$ Complex Regulates Dendritic Spine Formation. Journal of Biological Chemistry, 2016, 291, 19092-19107.	1.6	53
65	Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis. Journal of Biological Chemistry, 2016, 291, 25950-25964.	1.6	46
66	Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloidâ $\hat{\epsilon}^2$ (AÎ ²) ₄₂ peptides. Journal of Neurochemistry, 2016, 139, 1175-1191.	2.1	62
67	On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biological Research, 2016, 49, 10.	1.5	25
68	Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of <scp>A</scp> zheimer's Disease. Brain Pathology, 2016, 26, 62-74.	2.1	128
69	Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy. Neurobiology of Disease, 2016, 86, 109-120.	2.1	11
70	Regulation of Memory Formation by the Transcription Factor XBP1. Cell Reports, 2016, 14, 1382-1394.	2.9	142
71	Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neuroscience and Biobehavioral Reviews, 2016, 60, 121-138.	2.9	22
72	Role of Wnt Signaling in Central Nervous System Injury. Molecular Neurobiology, 2016, 53, 2297-2311.	1.9	99

#	Article	IF	CITATIONS
73	Tetrahydrohyperforin (IDN5706) targets the endoplasmic reticulum for autophagy activation: potential mechanism for Alzheimer′s disease therapy. Neural Regeneration Research, 2016, 11, 242.	1.6	O
74	Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Molecular Neurodegeneration, 2015, 10, 62.	4.4	77
75	How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Frontiers in Cellular Neuroscience, 2015, 9, 166.	1.8	61
76	Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against $A\tilde{A}\tilde{Z}\hat{A}^2$ oligomers. Frontiers in Cellular Neuroscience, 2015, 9, 227.	1.8	10
77	Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE, 2015, 10, e0135499.	1.1	45
78	Andrographolide Stimulates Neurogenesis in the Adult Hippocampus. Neural Plasticity, 2015, 2015, 1-13.	1.0	47
79	$<$ i $>$ Î $^2<$ li $>$ -Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. BioMed Research International, 2015, 2015, 1-13.	0.9	18
80	Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3 \hat{l}^2 : autoregulation of GSK-3 \hat{l}^2 <i>inÂvivo</i> . Biochemical Journal, 2015, 466, 415-430.	1.7	68
81	The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons. Molecular and Cellular Neurosciences, 2015, 67, 22-30.	1.0	11
82	Pathogenicity of Lupus Anti–Ribosomal P Antibodies: Role of Crossâ€Reacting Neuronal Surface P Antigen in Glutamatergic Transmission and Plasticity in a Mouse Model. Arthritis and Rheumatology, 2015, 67, 1598-1610.	2.9	62
83	Angiotensin II increases fibronectin and collagen I through the \hat{I}^2 -catenin-dependent signaling in mouse collecting duct cells. American Journal of Physiology - Renal Physiology, 2015, 308, F358-F365.	1.3	49
84	Teneurins and Alzheimer's disease: A suggestive role for a unique family of proteins. Medical Hypotheses, 2015, 84, 402-407.	0.8	13
85	A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal–hippocampal circuit. Experimental Neurology, 2015, 269, 43-55.	2.0	21
86	The increased potassium intake improves cognitive performance and attenuates histopathological markers in a model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2630-2644.	1.8	26
87	Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2379-2390.	1.8	55
88	Wnt5a inhibits K+ currents in hippocampal synapses through nitric oxide production. Molecular and Cellular Neurosciences, 2015, 68, 314-322.	1.0	15
89	The soluble extracellular fragment of neuroligin-1 targets $\hat{Al^2}$ oligomers to the postsynaptic region of excitatory synapses. Biochemical and Biophysical Research Communications, 2015, 466, 66-71.	1.0	23
90	WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by $\hat{Al^2}$ oligomers. Experimental Neurology, 2015, 264, 14-25.	2.0	29

#	Article	IF	CITATIONS
91	Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent <i>Octodon degus</i> , a Natural Model of <scp>A</scp> lzheimer's Disease. Brain Pathology, 2015, 25, 679-691.	2.1	42
92	Wnt signalling in neuronal differentiation and development. Cell and Tissue Research, 2015, 359, 215-223.	1.5	123
93	Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE, 2015, 10, e0136313.	1.1	34
94	Tetrahydrohyperforin: a neuroprotective modified natural compound against Alzheimer′s disease. Neural Regeneration Research, 2015, 10, 552.	1.6	7
95	Alzheimer \tilde{A} ¢ \hat{a} , $\neg \hat{a}$, φ s disease: relevant molecular and physiopathological events affecting amyloid- $\tilde{A}\check{Z}\hat{A}^2$ brain balance and the putative role of PPARs. Frontiers in Aging Neuroscience, 2014, 6, 176.	1.7	46
96	Chronic hypoxia induces the activation of the Wnt/ \hat{l}^2 -catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1 \hat{l} "E9 transgenic mice in vivo. Frontiers in Cellular Neuroscience, 2014, 8, 17.	1.8	60
97	Wnt-5a Ligand Modulates Mitochondrial Fission-Fusion in Rat Hippocampal Neurons. Journal of Biological Chemistry, 2014, 289, 36179-36193.	1.6	56
98	Wnt signaling in the nervous system and in Alzheimer's disease. Journal of Molecular Cell Biology, 2014, 6, 64-74.	1.5	260
99	Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochemical and Biophysical Research Communications, 2014, 444, 189-194.	1.0	39
100	<i>In vivo</i> Activation of <i>Wnt</i> Signaling Pathway Enhances Cognitive Function of Adult Mice and Reverses Cognitive Deficits in an Alzheimer's Disease Model. Journal of Neuroscience, 2014, 34, 2191-2202.	1.7	125
101	Phosphorylated tau potentiates $\hat{A^2}$ -induced mitochondrial damage in mature neurons. Neurobiology of Disease, 2014, 71, 260-269.	2.1	55
102	Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Progress in Neurobiology, 2014, 121, 125-146.	2.8	87
103	Signaling pathway cross talk in Alzheimer's disease. Cell Communication and Signaling, 2014, 12, 23.	2.7	126
104	Synthesis and Multitarget Biological Profiling of a Novel Family of Rhein Derivatives As Disease-Modifying Anti-Alzheimer Agents. Journal of Medicinal Chemistry, 2014, 57, 2549-2567.	2.9	132
105	Andrographolide reduces cognitive impairment in young and mature $\hat{A^2}$ PPswe/PS-1 mice. Molecular Neurodegeneration, 2014, 9, 61.	4.4	95
106	Nicotine Prevents Synaptic Impairment Induced by Amyloid- \hat{l}^2 Oligomers Through $\hat{l}\pm 7$ -Nicotinic Acetylcholine Receptor Activation. NeuroMolecular Medicine, 2013, 15, 549-569.	1.8	77
107	Tetrahydrohyperforin Induces Mitochondrial Dynamics and Prevents Mitochondrial Ca2+ Overload after Al ² and Al ² -AChE Complex Challenge in Rat Hippocampal Neurons. Journal of Alzheimer's Disease, 2013, 37, 735-746.	1.2	12
108	Tetrahydrohyperforin Decreases Cholinergic Markers associated with Amyloid-β Plaques, 4-Hydroxynonenal Formation, and Caspase-3 Activation in AβPP/PS1 Mice. Journal of Alzheimer's Disease, 2013, 36, 99-118.	1.2	26

#	Article	IF	CITATIONS
109	Peroxisome Proliferators Reduce Spatial Memory Impairment, Synaptic Failure, and Neurodegeneration in Brains of a Double Transgenic Mice Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 33, 941-959.	1.2	49
110	Tetrahydrohyperforin Increases Adult Hippocampal Neurogenesis in Wild-Type and APPswe/PS1ΔE9 Mice. Journal of Alzheimer's Disease, 2013, 34, 873-885.	1.2	34
111	Peroxisome Proliferator-Activated Receptor (PPAR) \hat{I}^3 and PPAR \hat{I}^\pm Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?. PLoS ONE, 2013, 8, e64019.	1.1	84
112	Wnt signaling: Role in LTP, neural networks and memory. Ageing Research Reviews, 2013, 12, 786-800.	5.0	76
113	Peroxisome Proliferator-activated Receptors and Alzheimer's Disease: Hitting the Blood–Brain Barrier. Molecular Neurobiology, 2013, 48, 438-451.	1.9	36
114	Wnt signaling in the regulation of adult hippocampal neurogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 100.	1.8	151
115	Frizzled-5 Receptor Is Involved in Neuronal Polarity and Morphogenesis of Hippocampal Neurons. PLoS ONE, 2013, 8, e78892.	1.1	32
116	Canonical Wnt signaling protects hippocampal neurons from $\hat{Al^2}$ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics. Frontiers in Cellular Neuroscience, 2013, 7, 97.	1.8	77
117	WNT signaling in neuronal maturation and synaptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 103.	1.8	204
118	Andrographolide activates the Wnt pathway and modulates the APP processing by direct inhibiton of GSK3 $\hat{1}^2$. FASEB Journal, 2013, 27, 835.11.	0.2	0
119	Wnt Signaling: Role in Alzheimer Disease and Schizophrenia. Journal of NeuroImmune Pharmacology, 2012, 7, 788-807.	2.1	165
120	Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13835-13840.	3. 3	113
121	Frizzled receptors in neurons: From growth cones to the synapse. Cytoskeleton, 2012, 69, 528-534.	1.0	25
122	Recent rodent models for Alzheimer's disease: clinical implications and basic research. Journal of Neural Transmission, 2012, 119, 173-195.	1.4	97
123	Activation of Brain Wnt signaling in vivo: Effect on LTP and Neurogenesis. FASEB Journal, 2012, 26, 81.1.	0.2	0
124	Regulation of NMDA-Receptor Synaptic Transmission by Wnt Signaling. Journal of Neuroscience, 2011, 31, 9466-9471.	1.7	136
125	Interactions of AChE with A? Aggregates in Alzheimer?s Brain: Therapeutic Relevance of IDN 5706. Frontiers in Molecular Neuroscience, 2011, 4, 19.	1.4	132
126	Tetrahydrohyperforin prevents cognitive deficit, $A\hat{l}^2$ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1 \hat{l} "E9 model of Alzheimer's disease: a possible effect on APP processing. Translational Psychiatry, 2011, 1, e20-e20.	2.4	62

#	Article	IF	CITATIONS
127	Wnt signaling modulates pre―and postsynaptic maturation: Therapeutic considerations. Developmental Dynamics, 2010, 239, 94-101.	0.8	30
128	Genome-wide identification of new Wnt/ \hat{l}^2 -catenin target genes in the human genome using CART method. BMC Genomics, 2010, 11, 348.	1.2	50
129	Adult hippocampal neurogenesis in aging and Alzheimer's disease. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 284-296.	3 . 6	49
130	Wnt-5aoccludes $\hat{Al^2}$ oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Molecular Neurodegeneration, 2010, 5, 3.	4.4	107
131	Amyloid- \hat{l}^2 -Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the A \hat{l}^2 peptide. Implications for the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2010, 5, 4.	4.4	96
132	Emerging roles of Wnts in the adult nervous system. Nature Reviews Neuroscience, 2010, 11, 77-86.	4.9	558
133	Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21164-21169.	3.3	185
134	The Hyperforin Derivative IDN5706 Occludes Spatial Memory Impairments and Neuropathological Changes in a Double Transgenic Alzheimers Mouse Model. Current Alzheimer Research, 2010, 7, 126-133.	0.7	38
135	Wnt-5a Modulates Recycling of Functional GABAA Receptors on Hippocampal Neurons. Journal of Neuroscience, 2010, 30, 8411-8420.	1.7	112
136	Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal Neurons. Journal of Biological Chemistry, 2009, 284, 15857-15866.	1.6	187
137	Calcium/calmodulinâ€dependent protein kinase type IV is a target gene of the <i>Wnt</i> ∫βâ€catenin signaling pathway. Journal of Cellular Physiology, 2009, 221, 658-667.	2.0	71
138	Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Development, 2009, 4, 41.	1.1	95
139	The role of Wnt signaling in neuroprotection. Drug News and Perspectives, 2009, 22, 579.	1.9	30
140	The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Molecular Neurodegeneration, 2008, 3, 9.	4.4	164
141	Frizzledâ€1 is involved in the neuroprotective effect of Wnt3a against Aβ oligomers. Journal of Cellular Physiology, 2008, 217, 215-227.	2.0	80
142	Release of acetylcholinesterase (AChE) from \hat{l}^2 -amyloid plaques assemblies improves the spatial memory impairments in APP-transgenic mice. Chemico-Biological Interactions, 2008, 175, 142-149.	1.7	37
143	STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's \hat{l}^2 -amyloid deposits. Brain, 2008, 131, 2425-2442.	3.7	136
144	Wnt-7a Modulates the Synaptic Vesicle Cycle and Synaptic Transmission in Hippocampal Neurons. Journal of Biological Chemistry, 2008, 283, 5918-5927.	1.6	205

#	Article	IF	Citations
145	Structure-Function Implications in Alzheimers Disease: Effect of Aβ Oligomers at Central Synapses. Current Alzheimer Research, 2008, 5, 233-243.	0.7	91
146	Wnt-7a Induces Presynaptic Colocalization of Â7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 5313-5325.	1.7	101
147	Synaptotoxicity in Alzheimer's Disease: The Wnt Signaling Pathway as a Molecular Target. IUBMB Life, 2007, 59, 316-321.	1.5	58
148	Trolox and $17\hat{l}^2$ -Estradiol Protect against Amyloid \hat{l}^2 -Peptide Neurotoxicity by a Mechanism That Involves Modulation of the Wnt Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 11615-11625.	1.6	109
149	Human-like rodent amyloid- \hat{l}^2 -peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiology of Aging, 2005, 26, 1023-1028.	1.5	106
150	Wnt-3a overcomes \hat{l}^2 -amyloid toxicity in rat hippocampal neurons. Experimental Cell Research, 2004, 297, 186-196.	1.2	203
151	Structure and function of amyloid in Alzheimer's disease. Progress in Neurobiology, 2004, 74, 323-349.	2.8	126
152	Acetylcholinesterase- ${\rm A\hat{l}^2}$ Complexes Are More Toxic than ${\rm A\hat{l}^2}$ Fibrils in Rat Hippocampus. American Journal of Pathology, 2004, 164, 2163-2174.	1.9	128
153	Wnt signaling involvement in \hat{l}^2 -amyloid-dependent neurodegeneration. Neurochemistry International, 2002, 41, 341-344.	1.9	80
154	A Structural Motif of Acetylcholinesterase That Promotes Amyloid β-Peptide Fibril Formationâ€. Biochemistry, 2001, 40, 10447-10457.	1.2	385
155	Wnt signaling function in Alzheimer's disease. Brain Research Reviews, 2000, 33, 1-12.	9.1	275
156	The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer's disease. Progress in Neurobiology, 2000, 62, 633-648.	2.8	347
157	Laminin blocks the assembly of wild-type $A\hat{l}^2$ and the Dutch variant peptide into Alzheimer's fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1998, 5, 16-23.	1.4	34
158	Stable Complexes Involving Acetylcholinesterase and Amyloid-β Peptide Change the Biochemical Properties of the Enzyme and Increase the Neurotoxicity of Alzheimer's Fibrils. Journal of Neuroscience, 1998, 18, 3213-3223.	1.7	264
159	Acetylcholinesterase Accelerates Assembly of Amyloid-Î ² -Peptides into Alzheimer's Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron, 1996, 16, 881-891.	3.8	1,032
160	Tetrameric (G ₄) Acetylcholinesterase: Structure, Localization, and Physiological Regulation. Journal of Neurochemistry, 1996, 66, 1335-1346.	2.1	60
161	Sulfation is required for mobility of veliger larvae of Concholepas concholepas (Mollusca;) Tj ETQq1 1 0.784314	rgBT /Over	lock 10 Tf 50
162	A high molecular weight proteoglycan is differentially expressed during development of the molluscConcholepas concholepas (Mollusca; Gastropoda; Muricidae). The Journal of Experimental Zoology, 1992, 264, 363-371.	1.4	5

#	Article	lF	CITATIONS
163	Association of Acetylcholinesterase with the cell surface. Journal of Membrane Biology, 1990, 118, 1-9.	1.0	41
164	Neurotransmitter-related enzyme acetylcholinesterase in juveniles of Concholepas concholepas (Mollusca; gastropoda; muricidae). The Journal of Experimental Zoology, 1990, 255, 1-8.	1.4	6
165	Biosynthesis of the neurofilament heavy subunit in Xenopus oocytes microinjected with rat brain poly(A)+ RNA. Molecular Biology Reports, 1987, 12, 265-271.	1.0	5
166	Ethanol Consumption Affects Neuronal Function: Role of the Mitochondria., 0,,.		4