Tobias Weidner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5785859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ice-nucleating bacteria control the order and dynamics of interfacial water. Science Advances, 2016, 2, e1501630.	4.7	182
2	Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13288-13293.	3.3	129
3	Probing the Orientation and Conformation of α-Helix and β-Strand Model Peptides on Self-Assembled Monolayers Using Sum Frequency Generation and NEXAFS Spectroscopy. Langmuir, 2010, 26, 3433-3440.	1.6	124
4	Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chemical Reviews, 2020, 120, 3420-3465.	23.0	114
5	Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100). Langmuir, 2010, 26, 14747-14754.	1.6	100
6	Amine terminated SAMs: Investigating why oxygen is present in these films. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 2-8.	0.8	98
7	IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nature Communications, 2015, 6, 7018.	5.8	97
8	NHC-Based Self-Assembled Monolayers on Solid Gold Substrates. Australian Journal of Chemistry, 2011, 64, 1177.	0.5	90
9	Probing the Orientation of Surface-Immobilized Protein G B1 Using ToF-SIMS, Sum Frequency Generation, and NEXAFS Spectroscopy. Langmuir, 2010, 26, 16434-16441.	1.6	83
10	Simultaneous Modification of Bottomâ€Contact Electrode and Dielectric Surfaces for Organic Thinâ€Film Transistors Through Singleâ€Component Spinâ€Cast Monolayers. Advanced Functional Materials, 2011, 21, 1476-1488.	7.8	76
11	SFG analysis of surface bound proteins: a route towards structure determination. Physical Chemistry Chemical Physics, 2013, 15, 12516.	1.3	75
12	The Role of Intact Oleosin for Stabilization and Function of Oleosomes. Journal of Physical Chemistry B, 2013, 117, 13872-13883.	1.2	75
13	Self-Assembly of a Pyridine-Terminated Thiol Monolayer on Au(111). Langmuir, 2009, 25, 959-967.	1.6	73
14	Spin ast and Patterned Organophosphonate Selfâ€Assembled Monolayer Dielectrics on Metalâ€Oxideâ€Activated Si. Advanced Materials, 2011, 23, 1899-1902.	11.1	70
15	Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance. Journal of Materials Chemistry C, 2013, 1, 101-113.	2.7	68
16	Correlation between the Molecular Structure and Photoresponse in Aliphatic Self-Assembled Monolayers with Azobenzene Tailgroups. Langmuir, 2008, 24, 11691-11700.	1.6	64
17	Physical and Electronic Structure Effects of Embedded Dipoles in Self-Assembled Monolayers: Characterization of Mid-Chain Ester Functionalized Alkanethiols on Au{111}. Journal of Physical Chemistry C, 2008, 112, 10842-10854.	1.5	61
18	The Interaction of 1,1â€~-Diisocyanoferrocene with Gold:  Formation of Monolayers and Supramolecular Polymerization of an Aurophilic Ferrocenophane. Journal of the American Chemical Society, 2005, 127, 1102-1103.	6.6	59

#	Article	IF	CITATIONS
19	Novel tripod ligands for prickly self-assembled monolayers. Dalton Transactions, 2006, , 2767-2777.	1.6	57
20	Amide or Amine: Determining the Origin of the 3300 cm ^{â^'1} NH Mode in Protein SFG Spectra Using ¹⁵ N Isotope Labels. Journal of Physical Chemistry B, 2009, 113, 15423-15426.	1.2	57
21	In-Silico Evidence for a Two Receptor Based Strategy of SARS-CoV-2. Frontiers in Molecular Biosciences, 2021, 8, 690655.	1.6	57
22	Balance of Structureâ^'Building Forces in Selenium-Based Self-Assembled Monolayers. Journal of the American Chemical Society, 2007, 129, 2232-2233.	6.6	55
23	Molecular Self-Assembly at Bare Semiconductor Surfaces: Cooperative Substrateâ^'Molecule Effects in Octadecanethiolate Monolayer Assemblies on GaAs(111), (110), and (100). ACS Nano, 2010, 4, 3447-3465.	7.3	55
24	The interaction with gold suppresses fiber-like conformations of the amyloid β (16–22) peptide. Nanoscale, 2016, 8, 8737-8748.	2.8	55
25	Diatom Mimics: Directing the Formation of Biosilica Nanoparticles by Controlled Folding of Lysine-Leucine Peptides. Journal of the American Chemical Society, 2014, 136, 15134-15137.	6.6	54
26	Tripodal Binding Units for Self-Assembled Monolayers on Gold: A Comparison of Thiol and Thioether Headgroups. Journal of Physical Chemistry C, 2009, 113, 19609-19617.	1.5	53
27	Probing the Orientation of Electrostatically Immobilized Protein G B1 by Time-of-Flight Secondary Ion Spectrometry, Sum Frequency Generation, and Near-Edge X-ray Adsorption Fine Structure Spectroscopy. Langmuir, 2012, 28, 2107-2112.	1.6	52
28	Reversible Activation of a Cell-Penetrating Peptide in a Membrane Environment. Journal of the American Chemical Society, 2015, 137, 12199-12202.	6.6	52
29	Type I Collagen from Jellyfish <i>Catostylus mosaicus</i> for Biomaterial Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2115-2125.	2.6	52
30	Kinetically Controlled Sequential Growth of Surfaceâ€Grafted Chiral Supramolecular Copolymers. Angewandte Chemie - International Edition, 2016, 55, 7242-7246.	7.2	48
31	Effect of the Bending Potential on Molecular Arrangement in Alkaneselenolate Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 12495-12506.	1.5	47
32	Calcium-Induced Molecular Rearrangement of Peptide Folds Enables Biomineralization of Vaterite Calcium Carbonate. Journal of the American Chemical Society, 2018, 140, 2793-2796.	6.6	46
33	Assembly and structure of α-helical peptide films on hydrophobic fluorocarbon surfaces. Biointerphases, 2010, 5, 9-16.	0.6	44
34	Self-Assembled Monolayers of a Bis(pyrazol-1-yl)pyridine-Substituted Thiol on Au(111). Langmuir, 2008, 24, 12883-12891.	1.6	40
35	A Solid-State Deuterium NMR and Sum-Frequency Generation Study of the Side-Chain Dynamics of Peptides Adsorbed onto Surfaces. Journal of the American Chemical Society, 2009, 131, 14148-14149.	6.6	40
36	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	7.2	40

#	Article	IF	CITATIONS
37	lce-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nature Communications, 2021, 12, 1183.	5.8	40
38	Dipodal Ferroceneâ€Based Adsorbate Molecules for Selfâ€Assembled Monolayers on Gold. Chemistry - A European Journal, 2008, 14, 4346-4360.	1.7	39
39	Direct Observation of Phenylalanine Orientations in Statherin Bound to Hydroxyapatite Surfaces. Journal of the American Chemical Society, 2012, 134, 8750-8753.	6.6	39
40	Sodium Dodecyl Sulfate Adsorption onto Positively Charged Surfaces: Monolayer Formation With Opposing Headgroup Orientations. Langmuir, 2013, 29, 12710-12719.	1.6	39
41	Self-Assembled Monolayers of Aromatic Tellurides on (111)-Oriented Gold and Silver Substrates. Journal of Physical Chemistry C, 2007, 111, 11627-11635.	1.5	38
42	Hydration of Sulphobetaine and Tetra(ethylene glycol)-Terminated Self-Assembled Monolayers Studied by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 11550-11556.	1.2	36
43	Zwitterionic dithiocarboxylates derived from N-heterocyclic carbenes: coordination to gold surfaces. Dalton Transactions, 2012, 41, 2986.	1.6	36
44	Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(111) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction. Langmuir, 2013, 29, 570-580.	1.6	36
45	Repelling and ordering: the influence of poly(ethylene glycol) on protein adsorption. Physical Chemistry Chemical Physics, 2017, 19, 28182-28188.	1.3	36
46	Energy Level Pinning in Self-Assembled Alkanethiol Monolayers. Journal of Physical Chemistry C, 2009, 113, 4575-4583.	1.5	35
47	Characterization of Poly(sodium styrene sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces. Langmuir, 2011, 27, 13104-13112.	1.6	35
48	The Structure of the Diatom Silaffin Peptide R5 within Freestanding Twoâ€Dimensional Biosilica Sheets. Angewandte Chemie - International Edition, 2017, 56, 8277-8280.	7.2	34
49	Biomimetic Growth of Ultrathin Silica Sheets Using Artificial Amphiphilic Peptides. Advanced Materials Interfaces, 2015, 2, 1500282.	1.9	33
50	On the Importance of Purity for the Formation of Self-Assembled Monolayers from Thiocyanates. Langmuir, 2008, 24, 6609-6615.	1.6	32
51	Spin cast self-assembled monolayer field effect transistors. Organic Electronics, 2012, 13, 464-468.	1.4	32
52	Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: Molecular Structure and Tribological Properties. Langmuir, 2013, 29, 4019-4031.	1.6	32
53	Hexadecadienyl Monolayers on Hydrogen-Terminated Si(111): Faster Monolayer Formation and Improved Surface Coverage Using the Enyne Moiety. Langmuir, 2012, 28, 6577-6588.	1.6	31
54	Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases, 2017, 12, 02D406.	0.6	31

#	Article	IF	CITATIONS
55	Orientation and Conformation of Proteins at the Air–Water Interface Determined from Integrative Molecular Dynamics Simulations and Sum Frequency Generation Spectroscopy. Langmuir, 2020, 36, 11855-11865.	1.6	30
56	Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. Organic Electronics, 2010, 11, 1066-1073.	1.4	29
57	Formation of Lysozyme Oligomers at Model Cell Membranes Monitored with Sum Frequency Generation Spectroscopy. Langmuir, 2014, 30, 7736-7744.	1.6	29
58	SAP(E) – A cell-penetrating polyproline helix at lipid interfaces. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2028-2034.	1.4	29
59	A New Approach for the Fabrication of Strongly Heterogeneous Mixed Self-Assembled Monolayers. ChemPhysChem, 2007, 8, 819-822.	1.0	28
60	Adamantane-Based Tripodal Thioether Ligands Functionalized with a Redox-Active Ferrocenyl Moiety for Self-Assembled Monolayers. Journal of Physical Chemistry C, 2010, 114, 14975-14982.	1.5	27
61	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	1.7	27
62	Determination of Absolute Orientation of Protein Î \pm -Helices at Interfaces Using Phase-Resolved Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 3101-3105.	2.1	27
63	Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric. Applied Physics Letters, 2009, 95, .	1.5	26
64	Probing the orientation of electrostatically immobilized cytochrome C by time of flight secondary ion mass spectrometry and sum frequency generation spectroscopy. Biointerphases, 2013, 8, 18.	0.6	26
65	Ultrafast Reorientational Dynamics of Leucine at the Air–Water Interface. Journal of the American Chemical Society, 2016, 138, 5226-5229.	6.6	26
66	Multitechnique characterization of adsorbed peptide and protein orientation: LK310 and Protein G B1. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C5D1-C5D8.	0.6	25
67	Sticky water surfaces: Helix–coil transitions suppressed in a cell-penetrating peptide at the air-water interface. Journal of Chemical Physics, 2014, 141, 22D517.	1.2	24
68	Evidence of a molecular boundary lubricant at snakeskin surfaces. Journal of the Royal Society Interface, 2015, 12, 20150817.	1.5	24
69	Direct characterization of polymer encapsulated CdSe/CdS/ZnS quantum dots. Surface Science, 2016, 648, 339-344.	0.8	23
70	Predicting the orientation of protein G B1 on hydrophobic surfaces using Monte Carlo simulations. Biointerphases, 2017, 12, 02D401.	0.6	23
71	UV-Promoted Exchange Reaction as a Tool for Gradual Tuning the Composition of Binary Self-Assembled Monolayers and Chemical Lithography. Journal of Physical Chemistry C, 2007, 111, 12002-12010.	1.5	22
72	How Universal Is the Wetting Aging in 2D Materials. Nano Letters, 2020, 20, 5670-5677.	4.5	22

#	Article	IF	CITATIONS
73	Modification of Alkaneselenolate Monolayers by Low-Energy Electrons. Journal of Physical Chemistry C, 2008, 112, 1191-1198.	1.5	21
74	Biomimetic vaterite formation at surfaces structurally templated by oligo(glutamic acid) peptides. Chemical Communications, 2015, 51, 15902-15905.	2.2	21
75	Lasalocid Acid Antibiotic at a Membrane Surface Probed by Sum Frequency Generation Spectroscopy. Langmuir, 2020, 36, 3184-3192.	1.6	21
76	Phthalocyaninato complexes with peripheral alkylthio chains: Disk-like adsorbate species for the vertical anchoring of ligands onto gold surfaces. Inorganica Chimica Acta, 2011, 374, 302-312.	1.2	20
77	Multiscale Effects of Interfacial Polymer Confinement in Silica Nanocomposites. Macromolecules, 2015, 48, 7929-7937.	2.2	20
78	Candle soot-based super-amphiphobic coatings resist protein adsorption. Biointerphases, 2016, 11, 031007.	0.6	20
79	Solvothermal Synthesis of Molybdenum–Tungsten Oxides and Their Application for Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 12641-12649.	3.2	20
80	Selfâ€Assembled Monolayers of Singleâ€Molecule Magnets [Tb{Pc′(SR) ₈ } ₂] on Gold. ChemPlusChem, 2012, 77, 889-897.	1.3	19
81	The structure of insulin at the air/water interface: monomers or dimers?. Physical Chemistry Chemical Physics, 2014, 16, 26722-26724.	1.3	19
82	The surface chemistry of iron oxide nanocrystals: surface reduction of γ-Fe ₂ O ₃ to Fe ₃ O ₄ by redox-active catechol surface ligands. Journal of Materials Chemistry C, 2018, 6, 326-333.	2.7	19
83	Tutorials in vibrational sum frequency generation spectroscopy. II. Designing a broadband vibrational sum frequency generation spectrometer. Biointerphases, 2022, 17, 011202.	0.6	19
84	A trough for improved SFG spectroscopy of lipid monolayers. Review of Scientific Instruments, 2017, 88, 053106.	0.6	18
85	Peptide-Controlled Assembly of Macroscopic Calcium Oxalate Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 2170-2174.	2.1	18
86	Modification of biphenylselenolate monolayers by lowâ€energy electrons. Physica Status Solidi (B): Basic Research, 2009, 246, 1519-1528.	0.7	17
87	Nitrated Fatty Acids Modulate the Physical Properties of Model Membranes and the Structure of Transmembrane Proteins. Chemistry - A European Journal, 2017, 23, 9690-9697.	1.7	17
88	lce-binding site of surface-bound type III antifreeze protein partially decoupled from water. Physical Chemistry Chemical Physics, 2018, 20, 26926-26933.	1.3	17
89	Tutorials in vibrational sum frequency generation spectroscopy. I. The foundations. Biointerphases, 2022, 17, 011201.	0.6	17
90	Probing albumin adsorption onto calcium phosphates by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 04D113.	0.6	16

#	Article	IF	CITATIONS
91	Bottom-contact small-molecule n-type organic field effect transistors achieved via simultaneous modification of electrode and dielectric surfaces. Organic Electronics, 2012, 13, 3226-3233.	1.4	16
92	Self-assembled nanostructures of redox-functionalized terpyridines monitored by optical second-harmonic generation. Applied Physics B: Lasers and Optics, 2003, 77, 31-35.	1.1	15
93	Solid-state densification of spun-cast self-assembled monolayers for use in ultra-thin hybrid dielectrics. Applied Surface Science, 2012, 261, 908-915.	3.1	14
94	Multiplexed Orientation and Structure Analysis by Imaging Near-Edge X-ray Absorption Fine Structure (MOSAIX) for Combinatorial Surface Science. Analytical Chemistry, 2013, 85, 4307-4310.	3.2	14
95	Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chemical Communications, 2015, 51, 273-275.	2.2	14
96	Self-assembled monolayers of ruthenocene-substituted biphenyl ethynyl thiols on gold. Journal of Electroanalytical Chemistry, 2008, 621, 159-170.	1.9	13
97	Bovine and human insulin adsorption at lipid monolayers: a comparison. Frontiers in Physics, 2015, 3, .	1.0	13
98	Kinetisch kontrolliertes, sequenzielles Wachstum von chiralen supramolekularen Copolymeren auf OberflÄ e hen. Angewandte Chemie, 2016, 128, 7358-7362.	1.6	13
99	LK peptide side chain dynamics at interfaces are independent of secondary structure. Physical Chemistry Chemical Physics, 2017, 19, 28507-28511.	1.3	13
100	Interaction of Amyloid-β-(1–42) Peptide and Its Aggregates with Lipid/Water Interfaces Probed by Vibrational Sum-Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 11208-11218.	1.2	13
101	High-Throughput Analysis of Molecular Orientation on Surfaces by NEXAFS Imaging of Curved Sample Arrays. ACS Combinatorial Science, 2014, 16, 449-453.	3.8	12
102	Otoferlin C2F Domain-Induced Changes in Membrane Structure Observed by Sum Frequency Generation. Biophysical Journal, 2019, 117, 1820-1830.	0.2	12
103	COOH-terminated SAMs on gold fabricated from an azobenzene derivative with a 1,2-dithiolane headgroup. Applied Surface Science, 2010, 256, 1832-1836.	3.1	11
104	Acetylation dictates the morphology of nanophase biosilica precipitated by a 14â€amino acid leucine–lysine peptide. Journal of Peptide Science, 2017, 23, 141-147.	0.8	11
105	Surface chemistry of the frog sticky-tongue mechanism. Biointerphases, 2018, 13, 06E408.	0.6	11
106	NEXAFS imaging to characterize the physio-chemical composition of cuticle from African Flower Scarab Eudicella gralli. Nature Communications, 2019, 10, 4758.	5.8	11
107	Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. Annual Review of Analytical Chemistry, 2021, 14, 389-412.	2.8	11
108	Dithienylcyclopentene-functionalised subphthalocyaninatoboron complexes: Photochromism, luminescence modulation and formation of self-assembled monolayers on gold. Dalton Transactions, 2012, 41, 1553-1561.	1.6	10

#	Article	IF	CITATIONS
109	Enhanced Performance of Selfâ€Assembled Monolayer Fieldâ€Effect Transistors with Topâ€Contact Geometry through Molecular Tailoring, Heated Assembly, and Thermal Annealing. Advanced Functional Materials, 2015, 25, 5376-5383.	7.8	10
110	Role of Surface Chemistry in the Superhydrophobicity of the Springtail Orchesella cincta (Insecta:Collembola). ACS Applied Materials & Interfaces, 2020, 12, 12294-12304.	4.0	10
111	Insects use lubricants to minimize friction and wear in leg joints. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211065.	1.2	10
112	Direct Evidence That Mutations within Dysferlin's C2A Domain Inhibit Lipid Clustering. Journal of Physical Chemistry B, 2021, 125, 148-157.	1.2	10
113	Gold nanoparticle growth on self-assembled monolayers ofÂferrocenyl-substituted terpyridine on graphite. Applied Physics A: Materials Science and Processing, 2009, 94, 11-17.	1.1	9
114	Molecular Suction Pads: Selfâ€Assembled Monolayers of Subphthalocyaninatoboron Complexes on Gold. ChemPhysChem, 2013, 14, 1155-1160.	1.0	9
115	Differential surface activation of the A1 domain of von Willebrand factor. Biointerphases, 2016, 11, 029803.	0.6	9
116	Structure of von Willebrand factor A1 on polystyrene determined from experimental and calculated sum frequency generation spectra. Biointerphases, 2018, 13, 06E411.	0.6	9
117	Effect of an ionic liquid/air Interface on the structure and dynamics of amphiphilic peptides. Journal of Molecular Liquids, 2017, 236, 404-413.	2.3	8
118	The primary photo-dissociation dynamics of lactate in aqueous solution: decarboxylation prevents dehydroxylation. Physical Chemistry Chemical Physics, 2021, 23, 4555-4568.	1.3	8
119	Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces. Journal of Physical Chemistry C, 2018, 122, 3312-3325.	1.5	7
120	Windowless detection geometry for sum frequency scattering spectroscopy in the C–D and amide I regions. Biointerphases, 2021, 16, 011201.	0.6	7
121	Electrostatics Trigger Interfacial Self-Assembly of Bacterial Ice Nucleators. Biomacromolecules, 2022, 23, 505-512.	2.6	7
122	Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides. Biointerphases, 2015, 10, 019009.	0.6	6
123	Intrinsically Disordered Osteopontin Fragment Orders During Interfacial Calcium Oxalate Mineralization. Angewandte Chemie - International Edition, 2021, 60, 18577-18581.	7.2	6
124	Structure of Keratins in Adhesive Gecko Setae Determined by Near-Edge X-ray Absorption Fine Structure Spectromicroscopy. Journal of Physical Chemistry Letters, 2022, 13, 2193-2196.	2.1	6
125	The Interaction of 1,1′â€Diphosphaferrocenes with Gold: Molecular Coordination Chemistry and Adsorption on Solid Substrates. European Journal of Inorganic Chemistry, 2017, 2017, 351-359.	1.0	5
126	Freezing from the inside: lce nucleation in <i>Escherichia coli</i> and <i>Escherichia coli</i> ghosts by inner membrane bound ice nucleation protein InaZ. Biointerphases, 2020, 15, 031003.	0.6	5

#	Article	IF	CITATIONS
127	The primary photolysis dynamics of oxalate in aqueous solution: decarboxylation. Physical Chemistry Chemical Physics, 2021, 23, 10040-10050.	1.3	5
128	Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra. Journal of Physical Chemistry Letters, 2021, 12, 9657-9661.	2.1	5
129	Both Poly(ethylene glycol) and Poly(methyl ethylene phosphate) Guide Oriented Adsorption of Specific Proteins. Langmuir, 2019, 35, 14092-14097.	1.6	4
130	Interpretation of Interfacial Protein Spectra with Enhanced Molecular Simulation Ensembles. Journal of Chemical Theory and Computation, 2019, 15, 698-707.	2.3	4
131	Synthetic Artificial Apoptosisâ€Inducing Receptor for Onâ€Demand Deactivation of Engineered Cells. Advanced Science, 2021, 8, 2004432.	5.6	4
132	Model Asphaltenes Adsorbed onto Methyl- and COOH-Terminated SAMs on Gold. Langmuir, 2021, 37, 9785-9792.	1.6	4
133	Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy. Langmuir, 2021, 37, 13452-13459.	1.6	4
134	Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biology Letters, 2022, 18, .	1.0	4
135	Functionalization of nanocrystalline diamond films with phthalocyanines. Applied Surface Science, 2016, 379, 415-423.	3.1	3
136	Magnetic Field Landscapes Guiding the Chemisorption of Diamagnetic Molecules. Langmuir, 2016, 32, 10491-10496.	1.6	3
137	Thiolated Lysineâ€Leucine Peptides Selfâ€Assemble into Biosilica Nucleation Pits on Gold Surfaces. Advanced Materials Interfaces, 2017, 4, 1700399.	1.9	3
138	Engineering von Proteinen an OberflÄ g hen: Von komplementÄ r er Charakterisierung zu MaterialoberflÄ g hen mit maÄÿgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	1.6	3
139	Surface chemistry of the ladybird beetle adhesive foot fluid across various substrates. Biointerphases, 2021, 16, 031004.	0.6	3
140	A liquid surface height controller for surface spectroscopy. Review of Scientific Instruments, 2021, 92, 094104.	0.6	3
141	Assembly of iron oxide nanosheets at the air–water interface by leucine–histidine peptides. RSC Advances, 2021, 11, 27965-27968.	1.7	3
142	Direct Evidence for Aligned Binding of Cellulase Enzymes to Cellulose Surfaces. Journal of Physical Chemistry Letters, 2021, 12, 10684-10688.	2.1	3
143	The primary photo-dissociation dynamics of lactic acid: decarboxylation as CO ₂ and CO ₂ Ê™ ^{â^'} . Physical Chemistry Chemical Physics, 2022, 24, 6880-6889.	1.3	3
144	Structure and Orientation of the SARS-Coronavirus-2 Spike Protein at Air–Water Interfaces. Journal of Physical Chemistry B, 2022, 126, 3425-3430.	1.2	3

#	Article	IF	CITATIONS
145	Die Struktur des Silaffinâ€Peptids R5 aus Diatomeen in freistehenden zweidimensionalen Biosilikatwäden. Angewandte Chemie, 2017, 129, 8390-8394.	1.6	2
146	The Diatom Peptide R5 Fabricates Two-Dimensional Titanium Dioxide Nanosheets. Journal of Physical Chemistry Letters, 2022, 13, 5025-5029.	2.1	2
147	The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin. ELife, 0, 11, .	2.8	2
148	Characterizing the Structure of Surface-Immobilized Proteins: A Surface Analysis Approach. ACS Symposium Series, 2012, , 761-779.	0.5	1
149	Preface: In Focus Issue on Protein Structures at Biointerfaces. Biointerphases, 2017, 12, 02D101.	0.6	1
150	Methane as a reddish coating agent. Icarus, 2022, , 115023.	1.1	1
151	Peptide Mimic of the Marine Sponge Protein Silicatein Fabricates Ultrathin Nanosheets of Silicon Dioxide and Titanium Dioxide. Langmuir, 0, , .	1.6	1
152	Self-assembly of highly rigid ferrocenyl nanostructures monitored by optical second harmonic generation. , 2004, , .		0
153	Ferrocene-based monolayers: Self-assembly via rigid bidentate anchor groups. , 2006, , .		0
154	Folding and Unfolding of pH Sensitive Peptides: The Role of Interfaces. Biophysical Journal, 2013, 104, 394a.	0.2	0
155	Surface Assembly: Thiolated Lysineâ€Leucine Peptides Selfâ€Assemble into Biosilica Nucleation Pits on Gold Surfaces (Adv. Mater. Interfaces 16/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	0
156	Intrinsisch ungeordnete Osteopontinâ€Fragmente ordnen sich wĤrend der interfazialen Calciumoxalatâ€Mineralisierung. Angewandte Chemie, 2021, 133, 18725-18729.	1.6	0