
Santiago Torres-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5785734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Adult Zebrafish Model Reveals that Mucormycosis Induces Apoptosis of Infected Macrophages. Scientific Reports, 2018, 8, 12802.	1.6	33
2	Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides. Methods in Molecular Biology, 2018, 1852, 221-237.	0.4	28
3	The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annual Review of Microbiology, 2017, 71, 371-391.	2.9	104
4	RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS Pathogens, 2017, 13, e1006150.	2.1	53
5	A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genetics, 2017, 13, e1006686.	1.5	50
6	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
7	A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering. Microbial Cell Factories, 2016, 15, 99.	1.9	33
8	RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity. Fungal Genetics and Biology, 2016, 90, 44-52.	0.9	46
9	Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides. Advances in Genetics, 2015, 91, 55-102.	0.8	22
10	The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides. BMC Genomics, 2015, 16, 237.	1.2	45
11	A Non-canonical RNA Silencing Pathway Promotes mRNA Degradation in Basal Fungi. PLoS Genetics, 2015, 11, e1005168.	1.5	57
12	Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature, 2014, 513, 555-558.	13.7	147
13	The RNAi Machinery in Mucorales: The Emerging Role of Endogenous Small RNAs. , 2014, , 291-313.		8
14	A White Collar 1-like protein mediates opposite regulatory functions in Mucor circinelloides. Fungal Genetics and Biology, 2013, 52, 42-52.	0.9	19
15	Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Applied Microbiology and Biotechnology, 2013, 97, 3063-3072.	1.7	93
16	Loss and Retention of RNA Interference in Fungi and Parasites. PLoS Pathogens, 2013, 9, e1003089.	2.1	65
17	A Single Argonaute Gene Participates in Exogenous and Endogenous RNAi and Controls Cellular Functions in the Basal Fungus Mucor circinelloides. PLoS ONE, 2013, 8, e69283.	1.1	53
18	Molecular Tools for Carotenogenesis Analysis in the Zygomycete Mucor circinelloides. Methods in Molecular Biology, 2012, 898, 85-107.	0.4	22

#	Article	IF	CITATIONS
19	Two distinct RNAâ€dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus <i>Mucor circinelloides</i> . Molecular Microbiology, 2012, 83, 379-394.	1.2	67
20	Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Research, 2010, 38, 5535-5541.	6.5	104
21	Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel. Energy & Fuels, 2010, 24, 3173-3178.	2.5	94
22	A Single <i>dicer</i> Gene Is Required for Efficient Gene Silencing Associated with Two Classes of Small Antisense RNAs in <i>Mucor circinelloides</i> . Eukaryotic Cell, 2009, 8, 1486-1497.	3.4	79
23	Transcriptional activation increases RNA silencing efficiency and stability in the fungus Mucor circinelloides. Journal of Biotechnology, 2009, 142, 123-126.	1.9	16
24	Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 2009, 48, 22-27.	1.8	261
25	A RING-finger photocarotenogenic repressor involved in asexual sporulation inMucor circinelloides. FEMS Microbiology Letters, 2008, 280, 81-88.	0.7	23
26	A RINGâ€finger protein regulates carotenogenesis via proteolysisâ€independent ubiquitylation of a White Collarâ€1â€like activator. Molecular Microbiology, 2008, 70, 1026-1036.	1.2	52
27	Microsporidia Evolved from Ancestral Sexual Fungi. Current Biology, 2008, 18, 1675-1679.	1.8	256
28	Non-AUG Translation Initiation of a Fungal RING Finger Repressor Involved in Photocarotenogenesis. Journal of Biological Chemistry, 2007, 282, 15394-15403.	1.6	17
29	Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genetics and Biology, 2007, 44, 504-516.	0.9	134
30	Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Molecular Microbiology, 2006, 61, 1023-1037.	1.2	109
31	Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genetics and Biology, 2005, 42, 141-153.	0.9	54
32	The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis. Molecular Microbiology, 2004, 52, 1463-1474.	1.2	26
33	Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO Journal, 2003, 22, 3983-3991.	3.5	132
34	Cloning, characterization and heterologous expression of theBlakeslea trisporagene encoding orotidine-5â€Â2-monophosphate decarboxylase. FEMS Microbiology Letters, 2003, 222, 229-236.	0.7	15
35	cigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor crgA. Fungal Genetics and Biology, 2003, 38, 122-132.	0.9	26
36	Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides. FEBS Journal, 2000, 267, 800-807.	0.2	39

#	Article	IF	CITATIONS
37	Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus. Molecular Genetics and Genomics, 1994, 244, 278-286.	2.4	19
38	Expression of Tn5-derived kanamycin resistance in the fungus Phycomyces blakesleeanus. Molecular Genetics and Genomics, 1988, 212, 375-377.	2.4	32
39	Nucleosomes containing histones H1 or H5 are closely inteespersed in chromatin. Nucleic Acids Research, 1982, 10, 2323-2335.	6.5	19
40	Substrate Transfer in Carotene Biosynthesis in phycomyces. FEBS Journal, 1981, 119, 511-516.	0.2	43