Yehezkel Ben-Ari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/578565/publications.pdf

Version: 2024-02-01

450 papers

46,737 citations

113 h-index 198 g-index

472 all docs

472 docs citations

472 times ranked

21165 citing authors

#	Article	IF	CITATIONS
1	Excitatory actions of gaba during development: the nature of the nurture. Nature Reviews Neuroscience, 2002, 3, 728-739.	10.2	2,110
2	Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience, 1985 , 14 , 375 - 403 .	2.3	1,640
3	Giant synaptic potentials in immature rat CA3 hippocampal neurones Journal of Physiology, 1989, 416, 303-325.	2.9	1,156
4	GABA: A Pioneer Transmitter That Excites Immature Neurons and Generates Primitive Oscillations. Physiological Reviews, 2007, 87, 1215-1284.	28.8	1,119
5	GABA: an excitatory transmitter in early postnatal life. Trends in Neurosciences, 1991, 14, 515-519.	8.6	1,012
6	GABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'. Trends in Neurosciences, 1997, 20, 523-529.	8.6	726
7	Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience, 1981, 6, 1361-1391.	2.3	620
8	Kainate, a double agent that generates seizures: two decades of progress. Trends in Neurosciences, 2000, 23, 580-587.	8.6	601
9	GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science, 2009, 326, 1419-1424.	12.6	593
10	Developing networks play a similar melody. Trends in Neurosciences, 2001, 24, 353-360.	8.6	565
11	Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 2004, 432, 758-761.	27.8	560
12	Oxytocin-Mediated GABA Inhibition During Delivery Attenuates Autism Pathogenesis in Rodent Offspring. Science, 2014, 343, 675-679.	12.6	515
13	Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nature Neuroscience, 2001, 4, 52-62.	14.8	506
14	The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders. Neuroscientist, 2012, 18, 467-486.	3.5	504
15	A cautionary note on the use of the TUNEL stain to determine apoptosis. NeuroReport, 1995, 7, 61-64.	1.2	465
16	Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery. Science, 2006, 314, 1788-1792.	12.6	414
17	The role of epileptic activity in hippocampal and â€remote' cerebral lesions induced by kainic acid. Brain Research, 1980, 191, 79-97.	2.2	413
18	Trophic actions of GABA on neuronal development. Trends in Neurosciences, 2005, 28, 278-283.	8.6	401

#	Article	IF	CITATIONS
19	Consequences of neonatal seizures in the rat: Morphological and behavioral effects. Annals of Neurology, 1998, 44, 845-857.	5.3	397
20	Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience, 1994, 63, 7-18.	2.3	394
21	The NMDA Receptor Is Coupled to the ERK Pathway by a Direct Interaction between NR2B and RasGRF1. Neuron, 2003, 40, 775-784.	8.1	394
22	Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus. Neuron, 1997, 18, 243-255.	8.1	377
23	Novel form of long-term potentiation produced by a K+channel blocker in the hippocampus. Nature, 1991, 349, 67-69.	27.8	363
24	Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience, 1984, 13, 1073-1094.	2.3	357
25	Injections of kainic acid into the amygdaloid complex of the rat: An electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience, 1980, 5, 515-528.	2.3	353
26	Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends in Neurosciences, 1992, 15, 333-339.	8.6	336
27	Effects of seizures on developmental processes in the immature brain. Lancet Neurology, The, 2006, 5, 1055-1063.	10.2	328
28	Apoptosis and Necrosis after Reversible Focal Ischemia: An in Situ DNA Fragmentation Analysis. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 186-194.	4.3	321
29	Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends in Neurosciences, 1990, 13, 312-318.	8.6	313
30	Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. Journal of Neuroscience, 1990, 10, 3782-3792.	3.6	308
31	Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Research, 1988, 461, 393-396.	2.2	301
32	Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo. Science, 2002, 296, 2049-2052.	12.6	300
33	Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends in Neurosciences, 2005, 28, 108-115.	8.6	292
34	Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. Journal of Comparative Neurology, 1979, 187, 401-424.	1.6	286
35	GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nature Neuroscience, 1998, 1, 470-478.	14.8	284
36	Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. Journal of Physiology, 2006, 572, 789-798.	2.9	275

#	Article	IF	CITATIONS
37	Kainate binding sites in the hippocampal mossy fibers: Localization and plasticity. Neuroscience, 1987, 20, 739-748.	2.3	273
38	In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nature Neuroscience, 2003, 6, 1079-1085.	14.8	272
39	Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends in Neurosciences, 2002, 25, 564-570.	8.6	271
40	Rapid Cortical Oscillations and Early Motor Activity in Premature Human Neonate. Cerebral Cortex, 2007, 17, 1582-1594.	2.9	266
41	Retinal Waves Trigger Spindle Bursts in the Neonatal Rat Visual Cortex. Journal of Neuroscience, 2006, 26, 6728-6736.	3.6	259
42	The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite. Journal of Neuroscience, 1999, 19, 10372-10382.	3.6	257
43	Paracrine Intercellular Communication by a Ca2+- and SNARE-Independent Release of GABA and Glutamate Prior to Synapse Formation. Neuron, 2002, 36, 1051-1061.	8.1	257
44	Rapid Communication: Regional Variability in DNA Fragmentation After Global Ischemia Evidenced by Combined Histological and Gel Electrophoresis Observations in the Rat Brain. Journal of Neurochemistry, 1993, 61, 1973-1976.	3.9	248
45	A randomised controlled trial of bumetanide in the treatment of autism in children. Translational Psychiatry, 2012, 2, e202-e202.	4.8	246
46	Evidence suggesting secondary epileptogenic lesions after kainic acid: pretreatment with diazepam reduces distant but not local brain damage. Brain Research, 1979, 165, 362-365.	2.2	244
47	Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex. Journal of Neuroscience, 2008, 28, 12851-12863.	3.6	240
48	Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus. Neuron, 2005, 48, 787-796.	8.1	237
49	A Conserved Switch in Sensory Processing Prepares Developing Neocortex for Vision. Neuron, 2010, 67, 480-498.	8.1	234
50	The GABA excitatory/inhibitory developmental sequence: A personal journey. Neuroscience, 2014, 279, 187-219.	2.3	233
51	Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy., 1999, 408, 449-460.		232
52	Changes in voltage dependence of NMDA currents during development. Neuroscience Letters, 1988, 94, 88-92.	2.1	229
53	Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons. Neuroscience Letters, 1993, 152, 150-154.	2.1	229
54	Early Development of Neuronal Activity in the Primate Hippocampus <i>In Utero</i> . Journal of Neuroscience, 2001, 21, 9770-9781.	3.6	219

#	Article	IF	Citations
55	The Neurobiology and Consequences of Epilepsy in the Developing Brain. Pediatric Research, 2001, 49, 320-325.	2.3	210
56	Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience, 1981, 6, 2475-2484.	2.3	209
57	Mossy fiber sprouting after recurrent seizures during early development in rats. Journal of Comparative Neurology, 1999, 404, 537-553.	1.6	205
58	Maturation of kainic acid seizure-brain damage syndrome in the rat. i. clinical, electrographic and metabolic observations. Neuroscience, 1984, 13, 1051-1072.	2.3	204
59	Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Research, 1987, 404, 58-64.	2.2	203
60	Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices Journal of Physiology, 1995, 487, 319-329.	2.9	203
61	Organization of the GABAergic system in the rat hippocampal formation: A quantitative immunocytochemical study. Journal of Comparative Neurology, 1989, 280, 254-271.	1.6	202
62	Quisqualate Metabotropic Receptors Modulate NMDA Currents and Facilitate Induction of Long-Term Potentiation Through Protein Kinase C. European Journal of Neuroscience, 1992, 4, 500-505.	2.6	197
63	A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures. Brain Research, 1979, 163, 176-179.	2.2	192
64	Hippocampal plasticity in the kindling model of epilepsy in rats. Neuroscience Letters, 1989, 99, 345-350.	2.1	192
65	A Noncanonical Release of GABA and Glutamate Modulates Neuronal Migration. Journal of Neuroscience, 2005, 25, 4755-4765.	3.6	192
66	Membrane Potential of CA3 Hippocampal Pyramidal Cells During Postnatal Development. Journal of Neurophysiology, 2003, 90, 2964-2972.	1.8	190
67	Hippocampal seizures and failure of inhibition. Canadian Journal of Physiology and Pharmacology, 1979, 57, 1462-1466.	1.4	187
68	Apoptotic features of selective neuronal death in ischemia, epilepsy and gpl20 toxicity. Trends in Neurosciences, 1996, 19, 109-114.	8.6	187
69	Alterations of the GluR-B AMPA receptor subunit flip/flop expression in kainate-induced epilepsy and ischemia. Neuroscience, 1993, 57, 545-554.	2.3	186
70	Network Mechanisms of Spindle-Burst Oscillations in the Neonatal Rat Barrel Cortex In Vivo. Journal of Neurophysiology, 2007, 97, 692-700.	1.8	180
71	Effects of kainic acid-induced seizures and ischemia on c-fos-like proteins in rat brain. Brain Research, 1990, 536, 183-194.	2.2	175
72	Seizures in the Developing Brain. Neuron, 1998, 21, 1231-1234.	8.1	171

#	Article	IF	CITATIONS
73	Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites?. Hippocampus, 1993, 3, 257-268.	1.9	168
74	Hippocampal plasticity in childhood epilepsy. Neuroscience Letters, 1989, 99, 351-355.	2.1	167
75	NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends in Neurosciences, 2017, 40, 536-554.	8.6	166
76	A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus. Neuron, 2007, 54, 105-120.	8.1	164
77	A Long-Lasting Calcium-Activated Nonselective Cationic Current Is Generated by Synaptic Stimulation or Exogenous Activation of Group I Metabotropic Glutamate Receptors in CA1 Pyramidal Neurons. Journal of Neuroscience, 1997, 17, 5366-5379.	3.6	161
78	Distribution of GABA-like immunoreactivity in the rat amygdaloid complex. Journal of Comparative Neurology, 1987, 266, 45-55.	1.6	152
79	A Model of Transient Unilateral Focal Ischemia With Reperfusion in the P7 Neonatal Rat. Stroke, 1998, 29, 1454-1461.	2.0	151
80	Cell Death and Synaptic Reorganizations Produced by Seizures. Epilepsia, 2001, 42, 5-7.	5.1	150
81	Longâ€lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid Journal of Physiology, 1988, 404, 365-384.	2.9	148
82	Presynaptic Kainate Receptors that Enhance the Release of GABA on CA1 Hippocampal Interneurons. Neuron, 2001, 29, 497-508.	8.1	147
83	Galanin reduces release of endogeneous excitatory amino acids in the rat hippocampus. European Journal of Pharmacology, 1993, 245, 1-7.	2.6	145
84	Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Translational Psychiatry, 2017, 7, e1056-e1056.	4.8	145
85	Spontaneous and evoked release of endogenous Zn2+ in the hippocampal mossy fiber zone of the rat in situ. Experimental Brain Research, 1985, 58, 202-5.	1.5	143
86	Stiripentol, a Putative Antiepileptic Drug, Enhances the Duration of Opening of GABAA-Receptor Channels. Epilepsia, 2006, 47, 704-716.	5.1	142
87	\hat{I}^3 -Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Progress in Brain Research, 1994, 102, 261-273.	1.4	141
88	Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices Journal of Physiology, 1997, 498, 763-772.	2.9	141
89	Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!. Frontiers in Cellular Neuroscience, 2012, 6, 35.	3.7	139
90	Inflammatory Responses in the Cerebral Cortex After Ischemia in the P7 Neonatal Rat. Stroke, 1999, 30, 1916-1924.	2.0	138

#	Article	IF	Citations
91	Quantal Release of Clutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons. Neuron, 2002, 35, 147-159.	8.1	137
92	A Novel In Vitro Preparation: the Intact Hippocampal Formation. Neuron, 1997, 19, 743-749.	8.1	136
93	Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. Journal of Neurophysiology, 1989, 62, 882-895.	1.8	135
94	Glutamate metabotropic receptors increase a Ca(2+)-activated nonspecific cationic current in CA1 hippocampal neurons. Journal of Neurophysiology, 1994, 72, 1561-1569.	1.8	135
95	Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami Journal of Physiology, 1976, 261, 647-671.	2.9	134
96	Cortical Malformations and Epilepsy: New Insights from Animal Models. Epilepsia, 1999, 40, 811-821.	5.1	134
97	Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) Is Differentially Induced in Neurons and Astrocytes after Seizures: Evidence for Developmental, Immediate Early Gene, and Lesion Response. Journal of Neuroscience, 1997, 17, 4223-4235.	3.6	133
98	Interneurons set the tune of developing networks. Trends in Neurosciences, 2004, 27, 422-427.	8.6	132
99	Regional distribution of choline acetyltransferase and acetylcholinesterase within the amygdaloid complex and stria terminalis system. Brain Research, 1977, 120, 435-445.	2.2	131
100	Cell death, gliosis, and synaptic remodeling in the hippocampus of epileptic rats. Journal of Neurobiology, 1995, 26, 413-425.	3.6	130
101	Kindling is associated with the formation of novel mossy fibre synapses in the CA3 region. Experimental Brain Research, 1992, 92, 69-78.	1.5	126
102	Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of inâ€∫vivo programmed cell death?. European Journal of Neuroscience, 1999, 11, 263-278.	2.6	126
103	Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. Journal of Physiology, 2005, 566, 671-679.	2.9	126
104	Altering cannabinoid signaling during development disrupts neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9388-9393.	7.1	126
105	Excitatory GABA in Rodent Developing Neocortex In Vitro. Journal of Neurophysiology, 2008, 100, 609-619.	1.8	125
106	Inhibitory conductance changes and action of \hat{l}^3 -aminobutyrate in rat hippocampus. Neuroscience, 1981, 6, 2445-2463.	2.3	124
107	Transient increase of NMDA-binding sites in human hippocampus during development. Neuroscience Letters, 1989, 99, 61-66.	2.1	124
108	Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12151-12156.	7.1	123

#	Article	IF	CITATIONS
109	Recurrent Mossy Fibers Establish Aberrant Kainate Receptor-Operated Synapses on Granule Cells from Epileptic Rats. Journal of Neuroscience, 2005, 25, 8229-8239.	3.6	123
110	The diuretic bumetanide decreases autistic behaviour in five infants treated during 3â€f months with no side effects. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 1885-1888.	1.5	123
111	Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain, 2011, 134, 987-1002.	7.6	120
112	A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons. Journal of Neurophysiology, 1993, 70, 2045-2055.	1.8	119
113	Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends in Neurosciences, 2008, 31, 626-636.	8.6	119
114	Q/R editing of the rat GluR5 and GluR6 kainate receptors inâ€fvivo and inâ€fvitro: evidence for independent developmental, pathological and cellular regulation. European Journal of Neuroscience, 1999, 11, 604-616.	2.6	118
115	Early sequential formation of functional GABA _A and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. European Journal of Neuroscience, 2002, 16, 197-208.	2.6	118
116	Postnatal changes in somatic γâ€aminobutyric acid signalling in the rat hippocampus. European Journal of Neuroscience, 2008, 27, 2515-2528.	2.6	117
117	Anoxic LTP sheds light on the multiple facets of NMDA receptors. Trends in Neurosciences, 1994, 17, 497-503.	8.6	114
118	Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus Journal of Physiology, 1996, 496, 471-477.	2.9	114
119	(RS)-alpha-methyl-4-carboxyphenylglycine neither prevents induction of LTP nor antagonizes metabotropic glutamate receptors in CA1 hippocampal neurons. Journal of Neurophysiology, 1993, 70, 2684-2689.	1.8	113
120	Galanin and Glibenclamide Modulate the Anoxic Release of Glutamate in Rat CA3 Hippocampal Neurons. European Journal of Neuroscience, 1990, 2, 62-68.	2.6	111
121	Choline acetyltransferase and acetylcholinesterase containing projections from the basal forebrain to the amygdaloid complex of the rat. Brain Research, 1979, 165, 271-282.	2.2	110
122	A cautionary note on the use of the TUNEL stain to determine apoptosis. NeuroReport, 1995, 7, 61-4.	1.2	110
123	The dark side of high-frequency oscillations in the developing brain. Trends in Neurosciences, 2006, 29, 419-427.	8.6	109
124	Fetal Exposure to GABA-Acting Antiepileptic Drugs Generates Hippocampal and Cortical Dysplasias. Epilepsia, 2007, 48, 684-693.	5.1	109
125	Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience, 1990, 37, 55-60.	2.3	104
126	What is GABAergic Inhibition? How Is it Modified in Epilepsy?. Epilepsia, 2000, 41, S90-S95.	5.1	104

#	Article	IF	Citations
127	Glial reaction after seizure induced hippocampal lesion: immunohistochemical characterization of proliferating glial cells. Journal of Neurocytology, 1994, 23, 641-656.	1.5	102
128	Newborn Analgesia Mediated by Oxytocin during Delivery. Frontiers in Cellular Neuroscience, 2011, 5, 3.	3.7	102
129	Long-term potentiation of synaptic transmission in the hippocampus induced by a bee venom peptide. Nature, 1987, 328, 70-73.	27.8	101
130	Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. Journal of Neurophysiology, 1996, 76, 1036-1046.	1.8	99
131	Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy. Nature Neuroscience, 1999, 2, 499-500.	14.8	99
132	Glutamate Acting on AMPA But Not NMDA Receptors Modulates the Migration of Hippocampal Interneurons. Journal of Neuroscience, 2006, 26, 5901-5909.	3.6	99
133	Is birth a critical period in the pathogenesis of autism spectrum disorders?. Nature Reviews Neuroscience, 2015, 16, 498-505.	10.2	99
134	Morphine withdrawal syndrome: Differential participation of structures located within the amygdaloid complex and striatum of the rat. Brain Research, 1979, 177, 19-34.	2.2	98
135	Dual Role of GABA in the Neonatal Rat Hippocampus. Developmental Neuroscience, 1999, 21, 310-319.	2.0	96
136	Early Endonuclease Activation following Reversible Focal Ischemia in the Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 385-388.	4.3	95
137	Neurochemical mapping of GABAergic systems in the amygdaloid complex and bed nucleus of the stria terminalis. Brain Research, 1978, 155, 397-403.	2.2	94
138	The multiple facets of \hat{l}^3 -aminobutyric acid dysfunction in epilepsy: review. Current Opinion in Neurology, 2005, 18, 141-145.	3.6	94
139	Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nature Communications, 2014, 5, 4563.	12.8	93
140	Improving emotional face perception in autism with diuretic bumetanide: A proof-of-concept behavioral and functional brain imaging pilot study. Autism, 2015, 19, 149-157.	4.1	93
141	Regional distribution of tyrosine hydroxylase, norepinephrine and dopamine within the amygdaloid complex of the rat. Brain Research, 1975, 87, 96-101.	2.2	92
142	Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. Journal of Physiology, 1999, 518, 109-119.	2.9	91
143	Dopamine evoked inhibition of single cells of the feline putamen and basolateral amygdala Journal of Physiology, 1976, 256, 1-21.	2.9	90
144	Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat. Journal of Neurophysiology, 1995, 73, 246-255.	1.8	90

#	Article	IF	Citations
145	Neuronal migration disorders: Heterotopic neocortical neurons in CA1 provide a bridge between the hippocampus and the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10263-10268.	7.1	90
146	Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system. Neuroscience, 1984, 13, 1095-1104.	2.3	89
147	Giant Depolarizing Potentials: the Septal Pole of the Hippocampus Paces the Activity of the Developing Intact Septohippocampal Complex <i>In Vitro</i> In VitroIn VitroI	3.6	89
148	Autoradiographic localization of kainic acid binding sites in the human hippocampus. Brain Research, 1985, 343, 378-382.	2.2	88
149	Postnatal maturation of gamma-aminobutyric acidA and B-mediated inhibition in the CA3 hippocampal region of the rat. Journal of Neurobiology, 1995, 26, 339-349.	3.6	87
150	Pharmacology of the dendritic action of acetylcholine and further observations on the somatic disinhibition in the rat hippocampusin situ. Neuroscience, 1983, 8, 97-106.	2.3	84
151	Mechanisms and effects of seizures in the immature brain. Seminars in Fetal and Neonatal Medicine, 2013, 18, 175-184.	2.3	84
152	Basic developmental rules and their implications for epilepsy in the immature brain. Epileptic Disorders, 2006, 8, 91-102.	1.3	83
153	Rapid activation of hippocampal casein kinase II during long-term potentiation Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10232-10236.	7.1	81
154	Bumetanide, an NKCC1 Antagonist, Does Not Prevent Formation of Epileptogenic Focus but Blocks Epileptic Focus Seizures in Immature Rat Hippocampus. Journal of Neurophysiology, 2009, 101, 2878-2888.	1.8	81
155	Blood flow compensates oxygen demand in the vulnerable ca3 region of the hippocampus during kainate-induced seizures. Neuroscience, 1984, 13, 1039-1049.	2.3	80
156	Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. Journal of Neurophysiology, 1993, 69, 1774-1778.	1.8	80
157	NMDA receptor redox sites: are they targets for selective neuronal protection?. Trends in Pharmacological Sciences, 1995, 16, 368-374.	8.7	80
158	Glutamate Transporters Prevent the Generation of Seizures in the Developing Rat Neocortex. Journal of Neuroscience, 2004, 24, 3289-3294.	3.6	79
159	Timing of developmental sequences in different brain structures: physiological and pathological implications. European Journal of Neuroscience, 2012, 35, 1846-1856.	2.6	78
160	REGIONAL DISTRIBUTION OF GLUTAMATE DECARBOXYLASE AND GABA WITHIN THE AMYGDALOID COMPLEX AND STRIA TERMINALIS SYSTEM OF THE RAT. Journal of Neurochemistry, 1976, 26, 1279-1283.	3.9	77
161	Blockade of excitatory synaptic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the hippocampus in vitro. Neuroscience Letters, 1988, 92, 64-68.	2.1	77
162	Mechanisms of Induction and Expression of Long-Term Depression at GABAergic Synapses in the Neonatal Rat Hippocampus. Journal of Neuroscience, 1999, 19, 7568-7577.	3.6	77

#	Article	IF	Citations
163	GABA is the principal fast-acting excitatory transmitter in the neonatal brain. Advances in Neurology, 1999, 79, 189-201.	0.8	77
164	aFGF, bFGF and flg mRNAs Show Distinct Patterns of Induction in the Hippocampus Following Kainate-induced Seizures. European Journal of Neuroscience, 1994, 6, 58-66.	2.6	76
165	Synaptic Kainate Receptors Tune Oriens-Lacunosum Moleculare Interneurons to Operate at Theta Frequency. Journal of Neuroscience, 2007, 27, 9560-9572.	3.6	76
166	Abnormal Network Activity in a Targeted Genetic Model of Human Double Cortex. Journal of Neuroscience, 2009, 29, 313-327.	3.6	76
167	NMDA Receptors Pattern Early Activity in the Developing Barrel Cortex In Vivo. Cerebral Cortex, 2009, 19, 688-696.	2.9	76
168	Phenotypic checkpoints regulate neuronal development. Trends in Neurosciences, 2010, 33, 485-492.	8.6	76
169	Pontine and mesencephalic afferents to the central nucleus of the amygdala of the rat. Neuroscience Letters, 1978, 8, 329-334.	2.1	74
170	Dopamine-Deprived Striatal GABAergic Interneurons Burst and Generate Repetitive Gigantic IPSCs in Medium Spiny Neurons. Journal of Neuroscience, 2009, 29, 7776-7787.	3.6	73
171	Cycloheximide Reduces the Effects of Anoxic InsultIn VivoandIn Vitro. European Journal of Neuroscience, 1992, 4, 758-765.	2.6	72
172	Autoradiographic visualization of [3H]kainic acid receptor subtypes in the rat hippocampus. Neuroscience Letters, 1983, 39, 237-242.	2.1	71
173	Correlation between reactive sprouting and microtubule protein expression in epileptic hippocampus. Neuroscience, 1994, 61, 773-787.	2.3	71
174	GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nature Communications, 2018, 9, 1422.	12.8	71
175	Interneurones are not so dormant in temporal lobe epilepsy: a critical reappraisal of the dormant basket cell hypothesis. Epilepsy Research, 1998, 32, 93-103.	1.6	70
176	Metabotropic receptor-mediated long-term potentiation in rat hippocampal slices. European Journal of Pharmacology, 1991, 205, 325-326.	3.5	69
177	Distribution of GABAergic neurons in late fetal and early postnatal rat hippocampus. Developmental Brain Research, 1989, 50, 177-187.	1.7	68
178	Neocortex in the hippocampus: An anatomical and functional study of CA1 heterotopias after prenatal treatment with methylazoxymethanol in rats. , 1998, 394, 520-536.		67
179	Cytosine Arabinoside Induces Apoptosis in Cerebellar Neurons in Culture. Journal of Neurochemistry, 1995, 64, 1980-1987.	3.9	67
180	Nitric Oxide Production and Perivascular Tyrosine Nitration Following Focal Ischemia in Neonatal Rat. Journal of Neurochemistry, 1998, 70, 2516-2525.	3.9	67

#	Article	IF	CITATIONS
181	Endogenous Neurotrophins Are Required for the Induction of GABAergic Long-Term Potentiation in the Neonatal Rat Hippocampus. Journal of Neuroscience, 2005, 25, 5796-5802.	3.6	67
182	Ongoing Epileptiform Activity in the Post-Ischemic Hippocampus Is Associated with a Permanent Shift of the Excitatory-Inhibitory Synaptic Balance in CA3 Pyramidal Neurons. Journal of Neuroscience, 2006, 26, 7082-7092.	3.6	67
183	Effects of oxytocin on GABA signalling in the foetal brain during delivery. Progress in Brain Research, 2008, 170, 243-257.	1.4	67
184	Hippocampal CA1 lacunosum-moleculare interneurons: comparison of effects of anoxia on excitatory and inhibitory postsynaptic currents. Journal of Neurophysiology, 1995, 74, 2138-2149.	1.8	65
185	Primary and Secondary Mechanisms of Epileptogenesis in the Temporal Lobe: There is a before and an After. Epilepsy Currents, 2010, 10, 118-125.	0.8	64
186	Bumetanide for autism: more eye contact, less amygdala activation. Scientific Reports, 2018, 8, 3602.	3.3	64
187	Morphine enhances amygdaloid seizures and increases inter-ictal spike frequency in kindled rats. Neuroscience Letters, 1977, 6, 255-260.	2.1	63
188	Anoxic LTP is mediated by the redox modulatory site of the NMDA receptor. Journal of Neurophysiology, 1994, 72, 3017-3022.	1.8	63
189	Paradoxical Anti-Epileptic Effects of a GluR5 Agonist of Kainate Receptors. Journal of Neurophysiology, 2002, 88, 523-527.	1.8	62
190	Actions of the p-chlorophenyl derivative of GABA, lioresal, on nociceptive and non-nociceptive units in the spinal cord of the cat. Brain Research, 1976, 117, 540-544.	2.2	61
191	The allosteric glycine site of the N-methyl-D-aspartate receptor modulates GABAergic-mediated synaptic events in neonatal rat CA3 hippocampal neurons Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 343-346.	7.1	61
192	Role of glutamate metabotropic receptors in long-term potentiation in the hippocampus. Seminars in Neuroscience, 1995, 7, 127-135.	2.2	61
193	Generation and propagation of 4-AP-induced epileptiform activity in neonatal intact limbic structures in vitro. European Journal of Neuroscience, 2000, 12, 2757-2768.	2.6	61
194	Cholinergic Modulation of Spindle Bursts in the Neonatal Rat Visual Cortex In Vivo. Journal of Neuroscience, 2007, 27, 5694-5705.	3.6	61
195	Gliosis and axonal sprouting in the hippocampus of epileptic rats are associated with an increase of tenascin-C immunoreactivity. Journal of Neurocytology, 1995, 24, 611-624.	1.5	60
196	Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors. Journal of Neurophysiology, 1995, 74, 2126-2137.	1.8	60
197	Lateral amygdala unit activity: I. Relationship between spontaneous and evoked activity. Electroencephalography and Clinical Neurophysiology, 1974, 37, 449-461.	0.3	59
198	Metabotropic receptor stimulation coupled to weak tetanus leads to long-term potentiation and a rapid elevation of cytosolic protein kinase C activity. Brain Research, 1993, 613, 1-9.	2.2	58

#	Article	IF	Citations
199	Consequences of Cortical Dysplasia During Development in Rats. Epilepsia, 1999, 40, 537-544.	5.1	57
200	Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus. European Journal of Neuroscience, 2001, 14, 1937-1946.	2.6	57
201	Histamine synthesizing afferents within the amygdaloid complex and bed nucleus of the stria terminalis of the rat. Brain Research, 1977, 138, 285-294.	2.2	56
202	Microiontophoretic effects of substance P on neurons of the medial amygdala and putamen of the rat. Brain Research, 1977, 135, 174-179.	2.2	56
203	Is senile dementia of the Alzheimer type associated with hippocampal plasticity?. Brain Research, 1988, 457, 355-359.	2.2	56
204	Interneurons are the Source and the Targets of the First Synapses Formed in the Rat Developing Hippocampal Circuit. Cerebral Cortex, 2003, 13, 684-692.	2.9	56
205	Effect of neonatal degranulation on the morphological development of rat CA3 pyramidal neurons: Inductive role of mossy fibers on the formation of thorny excrescences. Journal of Comparative Neurology, 1992, 321, 612-625.	1.6	55
206	In vivoblockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells. European Journal of Neuroscience, 2002, 16, 1931-1938.	2.6	55
207	Ischemia induces short- and long-term remodeling of synaptic activity in the hippocampus. Journal of Cellular and Molecular Medicine, 2003, 7, 401-407.	3.6	55
208	Seizures Beget Seizures in Temporal Lobe Epilepsies: The Boomerang Effects of Newly Formed Aberrant Kainatergic Synapses. Epilepsy Currents, 2008, 8, 68-72.	0.8	53
209	Depolarizing Actions of GABA in Immature Neurons Depend Neither on Ketone Bodies Nor on Pyruvate. Journal of Neuroscience, 2011, 31, 34-45.	3.6	53
210	Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids. Neuroscience, 1989, 28, 387-392.	2.3	52
211	Hippocampal inhibitory interneurons are functionally disconnected from excitatory inputs by anoxia. Journal of Neurophysiology, 1993, 70, 2251-2259.	1.8	52
212	Proliferative astrocytes may express fibronectin-like protein in the hippocampus of epileptic rats. Neuroscience Letters, 1994, 180, 13-16.	2.1	52
213	Large Amplitude Miniature Excitatory Postsynaptic Currents in Hippocampal CA3 Pyramidal Neurons Are of Mossy Fiber Origin. Journal of Neurophysiology, 1997, 77, 1075-1086.	1.8	52
214	Decreased seizure threshold and more rapid rate of kindling in rats with cortical malformation induced by prenatal treatment with methylazoxymethanol Brain Research, 1998, 812, 252-255.	2.2	52
215	Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus. Nature Communications, 2012, 3, 1316.	12.8	52
216	Tubacin prevents neuronal migration defects and epileptic activity caused by rat Srpx2 silencing in utero. Brain, 2013, 136, 2457-2473.	7.6	52

#	Article	IF	CITATIONS
217	Glutamate-induced neuronal death in cerebellar culture is mediated by two distinct components: a sodium-chloride component and a calcium component. Brain Research, 1994, 650, 49-55.	2.2	51
218	Treating <scp>F</scp> ragile <scp>X</scp> syndrome with the diuretic bumetanide: a case report. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, e288-90.	1.5	51
219	Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. Journal of Neurophysiology, 1995, 74, 2349-2357.	1.8	50
220	Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro. European Journal of Neuroscience, 1999, 11, 3468-3480.	2.6	50
221	Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Scientific Reports, 2019, 9, 9276.	3.3	50
222	A simple method for the serial sectioning of fresh brain and the removal of identifiable nuclei from stained sections for biochemical analysis. Journal of Neurochemistry, 1976, 26, 1285-1287.	3.9	49
223	Seizure-induced damage in the developing human: relevance of experimental models. Progress in Brain Research, 2002, 135, 321-334.	1.4	49
224	Persistent epileptiform activity induced by low Mg2+in intact immature brain structures. European Journal of Neuroscience, 2002, 16, 850-860.	2.6	49
225	Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro. Epilepsia, 2003, 44, 1365-1374.	5.1	49
226	Regional distribution of met-enkephalin within the amygdaloid complex and bed nucleus of the stria terminals. Neuroscience Letters, 1978, 10, 193-196.	2.1	48
227	Mossy fiber sprouting in epileptic rats is associated with a transient increased expression of \hat{l}_{\pm} -tubulin. Neuroscience Letters, 1993, 156, 149-152.	2.1	48
228	Subcellular Fractionation on Percoll Gradient of Mossy Fiber Synaptosomes: Morphological and Biochemical Characterization in Control and Degranulated Rat Hippocampus. Journal of Neurochemistry, 1994, 62, 1586-1595.	3.9	48
229	Treating Schizophrenia With the Diuretic Bumetanide. Clinical Neuropharmacology, 2016, 39, 115-117.	0.7	48
230	Plasticity at unitary level. II. Modifications during sensory-sensory association procedures. Electroencephalography and Clinical Neurophysiology, 1972, 32, 667-679.	0.3	47
231	Epileptiform bursts elicited in CA3 hippocampal neurons by a variety of convulsants are not blocked by N-methyl-d-aspartate antagonists. Brain Research, 1988, 459, 265-274.	2.2	47
232	Two binding sites for [3H]glibenclamide in the rat brain. Brain Research, 1991, 542, 151-154.	2.2	47
233	Neonatal irradiation prevents the formation of hippocampal mossy fibers and the epileptic action of kainate on rat CA3 pyramidal neurons. Journal of Neurophysiology, 1994, 71, 204-215.	1.8	45
234	From seizures to neo-synaptogenesis: Intrinsic and extrinsic determinants of mossy fiber sprouting in the adult hippocampus. Hippocampus, 1994, 4, 270-274.	1.9	45

#	Article	IF	Citations
235	Direct demonstration of functional disconnection by anoxia of inhibitory interneurons from excitatory inputs in rat hippocampus. Journal of Neurophysiology, 1995, 73, 421-426.	1.8	45
236	Spontaneous synaptic activity is required for the formation of functional GABAergic synapses in the developing rat hippocampus. Journal of Physiology, 2004, 559, 129-139.	2.9	45
237	Preservation of the direct and indirect pathways in an in vitro preparation of the mouse basal ganglia. Neuroscience, 2006, 140, 77-86.	2.3	45
238	Antiepileptic drugs and brain maturation: Fetal exposure to lamotrigine generates cortical malformations in rats. Epilepsy Research, 2008, 78, 131-139.	1.6	45
239	Reactive astrocytes in the kainic acid-damaged hippocampus have the phenotypic features of type-2 astrocytes. Journal of Neurocytology, 1993, 22, 299-310.	1.5	44
240	Developmental study of benzodiazepine effects on monosynaptic GABAA-mediated IPSPs of rat hippocampal neurons. Journal of Neurophysiology, 1993, 70, 1076-1085.	1.8	44
241	Intra-amygdaloid injections of kainic acid: Regional metabolic changes and their relation to the pathological alterations. Neuroscience, 1983, 8, 299-315.	2.3	43
242	Mobilization of intracellular calcium stores participates in the rise of [Ca2+]iand the toxic actions of the HIV coat protein GP120. European Journal of Neuroscience, 1999, 11, 1167-1178.	2.6	43
243	Phenobarbital but Not Diazepam Reduces AMPA/kainate Receptor Mediated Currents and Exerts Opposite Actions on Initial Seizures in the Neonatal Rat Hippocampus. Frontiers in Cellular Neuroscience, 2011, 5, 16.	3.7	43
244	Kainate reduces two voltage-dependent potassium conductances in rat hippocampal neurons in vitro. Brain Research, 1986, 385, 411-414.	2.2	42
245	Acidic calponin immunoreactivity in postnatal rat brain and cultures: subcellular localization in growth cones, under the plasma membrane and along actin and glial filaments. European Journal of Neuroscience, 1999, 11, 2801-2812.	2.6	42
246	Activation of Presynaptic and Postsynaptic Ryanodine-Sensitive Calcium Stores Is Required for the Induction of Long-Term Depression at GABAergic Synapses in the Neonatal Rat Hippocampus Amphetamine. Journal of Neuroscience, 2000, 20, RC94-RC94.	3.6	42
247	NCAM immunoreactivity on mossy fibers and reactive astrocytes in the hippocampus of epileptic rats. Brain Research, 1993, 626, 106-116.	2.2	41
248	Regional distribution of sulfonylurea receptors in the brain of rodent and primate. Neuroscience, 1993, 55, 1085-1091.	2.3	41
249	Molecular correlates between reactive and developmental plasticity in the rat hippocampus. Journal of Neurobiology, 1995, 26, 426-436.	3.6	41
250	The HIV-1 envelope protein GP120 induces neuronal apoptosis in hippocampal slices. NeuroReport, 1996, 7, 433-436.	1.2	41
251	Transient increase of tenascin-C in immature hippocampus: astroglial and neuronal expression. Journal of Neurocytology, 1996, 25, 53-66.	1.5	41
252	Seizures induce tenascin-C mRNA expression in neurons. Journal of Neurocytology, 1996, 25, 535-546.	1.5	41

#	Article	IF	Citations
253	Abnormal Connections in the Malformed Cortex of Rats with Prenatal Treatment with Methylazoxymethanol May Support Hyperexcitability. Developmental Neuroscience, 1999, 21, 385-392.	2.0	41
254	Development of high affinity kainate binding sites in human and rat hippocampi. Brain Research, 1986, 384, 170-174.	2.2	39
255	Anoxic changes in dentate granule cells. Neuroscience Letters, 1989, 107, 89-93.	2.1	39
256	Permanent Reduction of Seizure Threshold in Post-Ischemic CA3 Pyramidal Neurons. Journal of Neurophysiology, 2000, 83, 2040-2046.	1.8	39
257	Electrical stimulation of preganglionic nerve increases tyrosine hydroxylase activity in sympathetic ganglia Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 3078-3080.	7.1	37
258	Aberrant growth of mossy fibers and enhanced kainic acid binding sites induced in rats by early hyperthyroidism. Brain Research, 1987, 423, 325-328.	2.2	37
259	Biochemical Correlates of Long-Term Potentiation in Hippocampal Synapses. International Review of Neurobiology, 1993, 35, 1-41.	2.0	37
260	Development of mossy fiber synapses in hippocampal slice culture. Developmental Brain Research, 1994, 80, 244-250.	1.7	37
261	Ontogenesis of Presynaptic GABA _B Receptor-Mediated Inhibition in the CA3 Region of the Rat Hippocampus. Journal of Neurophysiology, 1998, 79, 1341-1348.	1.8	37
262	Distribution of spontaneous currents along the somato-dendritic axis of rat hippocampal CA1 pyramidal neurons. Neuroscience, 2000, 99, 593-603.	2.3	37
263	Anoxia on slow inward currents of immature hippocampal neurons. Journal of Neurophysiology, 1989, 62, 896-906.	1.8	36
264	Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP. Journal of Neurophysiology, 1996, 75, 770-779.	1.8	36
265	Layer-Specific Generation and Propagation of Seizures in Slices of Developing Neocortex: Role of Excitatory GABAergic Synapses. Journal of Neurophysiology, 2008, 100, 620-628.	1.8	36
266	Endogenous and network bursts induced by N-methyl-d-aspartate and magnesium free medium in the CA3 region of the hippocampal slice. Neuroscience, 1989, 28, 393-399.	2.3	35
267	Enhancement of extracellular protein concentrations during long-term potentiation in the rat hippocampal slice. Neuroscience, 1992, 47, 265-272.	2.3	35
268	Anisomycin and cycloheximide protect cerebellar neurons in culture from anoxia. Brain Research, 1992, 581, 323-326.	2.2	35
269	Bicuculline induces ictal seizures in the intact hippocampus recorded in vitro. European Journal of Pharmacology, 1997, 319, R5-R6.	3.5	35
270	Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus, 2006, 16, 408-420.	1,9	35

#	Article	IF	CITATIONS
271	Inhibition of Glutamate Transporters Results in a "Suppression-Burst" Pattern and Partial Seizures in the Newborn Rat. Epilepsia, 2007, 48, 169-74.	5.1	35
272	Enhanced synaptic activity and epileptiform events in the embryonic KCC2 deficient hippocampus. Frontiers in Cellular Neuroscience, 2011, 5, 23.	3.7	35
273	Response to Comment on "Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring― Science, 2014, 346, 176-176.	12.6	35
274	Redox modulation of synaptic responses and plasticity in rat CA1 hippocampal neurons. Experimental Brain Research, 1997, 113, 343-352.	1.5	34
275	Apoptosis and programmed cell death: a role in cerebral ischemia. Biomedicine and Pharmacotherapy, 1998, 52, 264-269.	5 . 6	34
276	Neuronal mechanisms of the anoxiaâ€induced network oscillations in the rat hippocampus in vitro. Journal of Physiology, 2001, 536, 521-531.	2.9	34
277	Differential properties of dentate gyrus and CA1 neural precursors. Journal of Neurobiology, 2005, 62, 243-261.	3 . 6	34
278	Somatic and dendritic actions of \hat{l}^3 -aminobutyric acid agonists and uptake blockers in the hippocampusin vivo. Neuroscience, 1984, 12, 543-555.	2.3	33
279	Antagonism of spontaneous and evoked bursts by 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) in the CA3 region of the in vitro hippocampus. Brain Research, 1988, 474, 201-203.	2.2	33
280	A Selective Interplay between Aberrant EPSPKA and INaP Reduces Spike Timing Precision in Dentate Granule Cells of Epileptic Rats. Cerebral Cortex, 2010, 20, 898-911.	2.9	33
281	Regional distribution of somatostatin within the amygdaloid complex of the. Brain Research, 1979, 174, 172-174.	2.2	32
282	Effects of neonatal γ-ray irradiation on rat hippocampusâ€"I. Postnatal maturation of hippocampal cells. Neuroscience, 1991, 42, 137-150.	2.3	32
283	Developmental and regional differences in the vulnerability of rat hippocampal slices to lack of glucose. Neuroscience, 1992, 47, 579-587.	2.3	32
284	Effect of Seizures Induced by Intraâ€Amygdaloid Kainic Acid on Kainic Acid Binding Sites in Rat Hippocampus and Amygdala. Journal of Neurochemistry, 1986, 47, 720-727.	3.9	32
285	Diazepam pretreatment reduces distant hippocampal damage induced by intra-amygdaloid injections of kainic acid. European Journal of Pharmacology, 1978, 52, 419-420.	3.5	31
286	Modulation of GABA-mediated Synaptic Potentials by Glutamatergic Agonists in Neonatal CA3 Rat Hippocampal Neurons. European Journal of Neuroscience, 1991, 3, 301-309.	2.6	31
287	DNA damage and DNA damage-inducible protein Gadd45 following ischemia in the P7 neonatal rat. Developmental Brain Research, 1999, 116, 133-140.	1.7	31
288	Increase in Specific Proteins and mRNAs Following Transient Anoxia-Aglycaemia in Rat CA1 Hippocampal Slices. European Journal of Neuroscience, 1992, 4, 766-776.	2.6	30

#	Article	IF	CITATIONS
289	Structure, regional and developmental expression of rat MAP2d, a MAP2 splice variant encoding four microtubule-binding domains. Neurochemistry International, 1994, 25, 327-338.	3.8	30
290	Neuropaediatric and neuroarchaeology: understanding development to correct brain disorders. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, 331-334.	1.5	30
291	Identification of authentic substance P in striatonigral and amygdaloid nuclei using combined high performance liquid chromatography and radioimmunoassay. Brain Research, 1979, 173, 360-363.	2.2	29
292	Usefulness of parenteral kainic acid as a model of temporal lobe epilepsy. Revue D'electroencephalographie Et De Neurophysiologie Clinique, 1984, 14, 241-246.	0.0	29
293	Release of proteins during long-term potentiation in the hippocampus of the anaesthetized rat. Neuroscience Letters, 1988, 91, 308-314.	2.1	29
294	Autoradiographic study of the cellular localization of [3H]glibenclamide binding sites in the rat hippocampus. Neuroscience Letters, 1991, 127, 21-24.	2.1	29
295	In CA1 hippocampal neurons, the redox state of NMDA receptors determines LTP expressed by NMDA but not by AMPA receptors. Journal of Neurophysiology, 1995, 73, 2612-2617.	1.8	29
296	The GABA Developmental Shift Is Abolished by Maternal Immune Activation Already at Birth. Cerebral Cortex, 2019, 29, 3982-3992.	2.9	29
297	Epilepsies and neuronal plasticity: for better or for worse?. Dialogues in Clinical Neuroscience, 2008, 10, 17-27.	3.7	29
298	Characterization of sulfonylurea receptors and the action of potassium channel openers on cholinergic neurotransmission in guinea pig isolated small intestine. Journal of Pharmacology and Experimental Therapeutics, 1991, 259, 566-73.	2.5	29
299	Lateral amygdala unit activity: II. Habituating and non-habituating neurons. Electroencephalography and Clinical Neurophysiology, 1974, 37, 463-472.	0.3	28
300	Dual cholinergic modulation of hippocampal somatic and dendritic field potentials by the septo-hippocampal pathway. Experimental Brain Research, 1983, 49, 151-5.	1.5	28
301	Different GABA _B â€Mediated Effects on Protein Kinase C Activity and Immunoreactivity in Neonatal and Adult Rat Hippocampal Slices. Journal of Neurochemistry, 1995, 65, 863-870.	3.9	28
302	Failure of the Nemo Trial: Bumetanide Is a Promising Agent to Treat Many Brain Disorders but Not Newborn Seizures. Frontiers in Cellular Neuroscience, 2016, 10, 90.	3.7	28
303	MAP2d promotes bundling and stabilization of both microtubules and microfilaments. Journal of Cell Science, 1996, 109, 1095-1103.	2.0	28
304	Three-Independent-Compartment Chamber to Study In Vitro Commissural Synapses. Journal of Neurophysiology, 1999, 81, 921-924.	1.8	27
305	Long-lasting potentiation produced by a phorbol ester in the hippocampus of the anaesthetized rat is not associated with a persistent enhanced release of excitatory amino acids. Neuroscience Letters, 1987, 81, 291-295.	2.1	26
306	Brief anoxic episodes induce long-lasting changes in synaptic properties of rat CA3 hippocampal neurons. Neuroscience Letters, 1988, 90, 273-278.	2.1	26

#	Article	lF	Citations
307	Effects of kainate on the excitability of rat hippocampal neurones. Epilepsy Research, 1990, 5, 18-27.	1.6	26
308	Zinc and GABA in developing brain. Nature, 1991, 353, 220-220.	27.8	26
309	Multiple forms of long-term potentiation and multiple regulatory sites of N-methyl-D-aspartate receptors: Role of the redox site. Journal of Neurobiology, 1995, 26, 360-369.	3.6	26
310	Enhanced NMDAR-dependent epileptiform activity is controlled by oxidizing agents in a chronic model of temporal lobe epilepsy. Journal of Neurophysiology, 1996, 76, 4185-4189.	1.8	26
311	Neonatal Î ³ -Ray Irradiation Impairs Learning and Memory of an Olfactory Associative Task in Adult Rats. European Journal of Neuroscience, 1997, 9, 884-894.	2.6	26
312	Generation of Slow Network Oscillations in the Developing Rat Hippocampus After Blockade of Glutamate Uptake. Journal of Neurophysiology, 2007, 98, 2324-2336.	1.8	26
313	Inhibitory actions of the gammaâ€aminobutyric acid in pediatric Sturgeâ€Weber syndrome. Annals of Neurology, 2009, 66, 209-218.	5.3	26
314	Is activation of receptor gated channels sufficient to induce long term potentiation?. Neuroscience Letters, 1987, 80, 283-288.	2.1	25
315	Term or Preterm Cesarean Section Delivery Does Not Lead to Long-term Detrimental Consequences in Mice. Cerebral Cortex, 2019, 29, 2424-2436.	2.9	25
316	Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD. Scientific Reports, 2021, 11, 6877.	3.3	25
317	Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells. Annals of Neurology, 2000, 47, 729-38.	5.3	25
318	Intra-amygdaloid applications of naloxone elicits severe withdrawal signs in morphine dependent rats. Neuroscience Letters, 1978, 8, 241-245.	2.1	24
319	Hippocampal damage induced by ischemia and intra-amygdaloid kainate injection: Effects on N-methyl-d-aspartate, N-(1-[2-thienyl]cyclohexyl)piperidine and glycine binding sites. Neuroscience, 1989, 31, 605-612.	2.3	24
320	Late embryonic expression of AMPA receptor function in the CA1 region of the intact hippocampus in vitro. European Journal of Neuroscience, 1999, 11, 4015-4023.	2.6	24
321	Chapter 23 Chapter GABAergic mechanisms in the CA3 hippocampal region during early postnatal life. Progress in Brain Research, 1990, 83, 313-321.	1.4	23
322	NG-Nitro-l-arginine methyl ester reduces necrotic but not apoptotic cell death induced by reversible focal ischemia in rat. European Journal of Pharmacology, 1996, 310, 137-140.	3.5	23
323	Longâ€lasting enhanced expression in the rat hippocampus of NMDAR1 splice variants in a kainate model of epilepsy. European Journal of Neuroscience, 1998, 10, 497-507.	2.6	23
324	Calcium-dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture. European Journal of Neuroscience, 1999, 11, 2422-2430.	2.6	23

#	Article	IF	Citations
325	Sulphonylureas reduce the slowly inactivating D-type outward current in rat hippocampal neurons. Journal of Physiology, 1993, 466, 39-54.	2.9	23
326	Exclusively inhibitory action of iontophoretic acetylcholine on single neurones of feline thalamus. Nature, 1976, 259, 327-330.	27.8	22
327	Benzodiazepines do not potentiate GABA responses in neonatal hippocampal neurons. Neuroscience Letters, 1991, 130, 157-161.	2.1	22
328	Reactive glial cells express a vitronectin-like protein in the hippocampus of epileptic rats., 1996, 16, 359-367.		22
329	GABAergic neurons of the hippocampus: Development in homotopic grafts and in dissociated cell cultures. Neuroscience, 1987, 23, 73-86.	2.3	21
330	FGF-2 Induces Nerve Growth Factor Expression in Cultured Rat Hippocampal Neurons. European Journal of Neuroscience, 1997, 9, 1282-1289.	2.6	21
331	Differential expression of fibronectin, tenascin-C and NCAMs in cultured hippocampal astrocytes activated by kainate, bacterial lipopolysaccharide or basic fibroblast growth factor. Brain Research, 1997, 775, 63-73.	2.2	21
332	Regulation of apoptosis-associated proteins in cell death following transient focal ischemia in rat pups. Apoptosis: an International Journal on Programmed Cell Death, 1997, 2, 368-376.	4.9	21
333	Oxytocin and Vasopressin, and the GABA Developmental Shift During Labor and Birth: Friends or Foes?. Frontiers in Cellular Neuroscience, 2018, 12, 254.	3.7	21
334	Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. Science Advances, 2019, 5, eaav0394.	10.3	21
335	Development of the cholinergic system in control and intra-uterine growth retarded rat brain. Developmental Brain Research, 1989, 47, 71-79.	1.7	20
336	Block of GABAb-activated K+ conductance by kainate and quisqualate in rat CA3 hippocampal pyramidal neurones. Pflugers Archiv European Journal of Physiology, 1990, 415, 471-478.	2.8	20
337	Persistent pulsatile release of glutamate induced by N-methyl-D-aspartate in neonatal rat hippocampal neurones Journal of Physiology, 1991, 436, 531-547.	2.9	20
338	The K+ channel opener diazoxide enhances glutamatergic currents and reduces GABAergic currents in hippocampal neurons. Journal of Neurophysiology, 1993, 69, 494-503.	1.8	20
339	Distribution of Caldesmon and of the Acidic Isoform of Calponin in Cultured Cerebellar Neurons and in Different Regions of the Rat Brain: An Immunofluorescence and Confocal Microscopy Study. Experimental Cell Research, 1995, 221, 333-343.	2.6	20
340	Chapter 18 Synaptic plasticity in ischemia: Role of NMDA receptors. Progress in Brain Research, 1998, 116, 273-285.	1.4	19
341	GABA Regulates Stem Cell Proliferation before Nervous System Formation. Epilepsy Currents, 2008, 8, 137-139.	0.8	19
342	Molecular and cellular cascades in seizure-induced neosynapse formation. Advances in Neurology, 1997, 72, 25-34.	0.8	19

#	Article	IF	Citations
343	A multidisciplinary study of folic acid neurotoxicity: Interactions with kainate binding sites and relevance to the aetiology of epilepsy. Neuroscience, 1984, 12, 569-589.	2.3	18
344	Redox sites of NMDA receptors can modulate epileptiform activity in hippocampal slices from kainic acid-treated rats. Neuroscience Letters, 1996, 212, 171-174.	2.1	18
345	Ultrastructural morphology of neuronal death following reversible focal ischemia in the rat. Apoptosis: an International Journal on Programmed Cell Death, 1998, 3, 133-141.	4.9	18
346	A single episode of neonatal seizures permanently alters glutamatergic synapses. Annals of Neurology, 2007, 61, 379-381.	5. 3	18
347	Late-Onset Epileptogenesis and Seizure Genesis: Lessons From Models of Cerebral Ischemia. Neuroscientist, 2008, 14, 78-90.	3. 5	18
348	GABA and glutamate in the preterm neonatal brain: In-vivo measurement by magnetic resonance spectroscopy. Neurolmage, 2021, 238, 118215.	4.2	18
349	Process formation results from the imbalance between motor-mediated forces. Journal of Cell Science, 2001, 114, 3899-904.	2.0	18
350	induces recurrent synchronized burst activity in immature hippocampal CA3 neurones in vitro. Developmental Brain Research, 1989, 46, 1-8.	1.7	17
351	Developmental study of [3H]TCP and [3H]glycine binding sites in the rat hippocampus. Developmental Brain Research, 1990, 57, 21-28.	1.7	17
352	MAP2d mRNA is expressed in identified neuronal populations in the developing and adult rat brain and its subcellular distribution differs from that of MAP2b in hippocampal neurones. European Journal of Neuroscience, 1998, 10, 161-171.	2.6	17
353	Blocking seizures with the diuretic bumetanide: Promises and pitfalls. Epilepsia, 2012, 53, 394-396.	5.1	17
354	Commentary: GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Frontiers in Cellular Neuroscience, 2015, 9, 478.	3.7	17
355	The NMDA receptor contributes to anoxic aglcemic induced irreversible inhibition of synaptic transmission. Brain Research, 1993, 607, 54-60.	2.2	16
356	NMDA-Dependent GABAA-Mediated Polysynaptic Potentials in the Neonatal Rat Hippocampal CA3 Region. European Journal of Neuroscience, 1995, 7, 1442-1448.	2.6	16
357	GABA Excites and Sculpts Immature Neurons Well before Delivery: Modulation by GABA of the Development of Ventricular Progenitor Cells. Epilepsy Currents, 2007, 7, 167-169.	0.8	16
358	The developing cortex. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 111, 417-426.	1.8	16
359	Maturation of GABAergic Transmission in Cerebellar Purkinje Cells Is Sex Dependent and Altered in the Valproate Model of Autism. Frontiers in Cellular Neuroscience, 2018, 12, 232.	3.7	16
360	Plasticity at unitary level. I. An experimental design. Electroencephalography and Clinical Neurophysiology, 1972, 32, 655-665.	0.3	15

#	Article	IF	CITATIONS
361	Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates. Epilepsia, 2011, 52, 1544-1558.	5.1	15
362	Relationship between spontaneous and evoked unit activity in the amygdala of the cat. Brain Research, 1971, 32, 474-478.	2.2	14
363	Selective destruction of mossy fibers and granule cells with preservation of the GABAergic network in the inferior region of the rat hippocampus after colchicine treatment. Journal of Comparative Neurology, 1989, 285, 274-287.	1.6	14
364	Hippocampal potassium ATP channels and anoxia: presynaptic, postsynaptic or both?. Trends in Neurosciences, 1990, 13, 409-410.	8.6	14
365	Inhibition of protein synthesis by the NMDA channel blocker MK-801. NeuroReport, 1994, 5, 1110-1112.	1.2	14
366	Developmental study of miniature IPSCs of CA3 hippocampal cells: modulation by midazolam. Developmental Brain Research, 1999, 114, 79-88.	1.7	14
367	Recurrent CA1 collateral axons in developing rat hippocampus. Brain Research, 2001, 913, 195-200.	2.2	14
368	Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Annals of Neurology, 1999, 46, 95-102.	5.3	14
369	D-Aminophosphonovaleric acid-sensitive spontaneous giant EPSPs in immature rat hippocampal neurones. European Journal of Pharmacology, 1988, 154, 221-222.	3.5	13
370	Glibenclamide depresses the slowly inactivating outward current (ID) in hippocampal neurons. Canadian Journal of Physiology and Pharmacology, 1992, 70, 306-307.	1.4	13
371	The calcium-dependent transient inactivation of recombinant NMDA receptor-channel does not involve the high affinity calmodulin binding site of the NR1 subunit. Neuroscience Letters, 1997, 223, 137-139.	2.1	13
372	Demonstration of a heavy projection of midline thalamic neurons upon the lateral nucleus of the amygdala of the rat. Neuroscience Letters, 1978, 9, 147-152.	2.1	12
373	Visual deprivation decreases met-enkephalin and substance P content of various forebrain structures. Brain Research, 1979, 166, 191-193.	2.2	12
374	Alterations in Local Glucose Consumption following Systemic Administration of Kainic Acid, Bicuculline or Metrazol. European Neurology, 1981, 20, 173-175.	1.4	12
375	Simultaneous recording of somatic and dendritic field potentials and combined microiontophoresis in the rat ammon's horn in situ: effects of GABA and acetylcholine. Neuroscience Letters, 1982, 31, 19-24.	2.1	12
376	Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarâ ylase activity in control and degranulated rat hippocampus. Brain Research, 1994, 644, 313-321.	2.2	12
377	NMDA redox site modulates long-term potentiation of NMDA but not of AMPA receptors. European Journal of Pharmacology, 1994, 262, R3-R4.	3.5	12
378	Model of spatio-temporal propagation of action potentials in the Schaffer collateral pathway of the CA1 area of the rat hippocampus., 1997, 7, 58-72.		12

#	Article	IF	CITATIONS
379	Compensatory dendritic growth of CA1 pyramidal cells following growth impairment in the neonatal period. European Journal of Neuroscience, 2003, 18, 1332-1336.	2.6	12
380	Striatal dual cholinergic /GABAergic transmission in Parkinson disease: friends or foes?. Cell Stress, 2018, 2, 147-149.	3.2	12
381	Nucleotides modulate the low affinity binding sites for [3H]glibenclamide in the rat brain. Journal of Pharmacology and Experimental Therapeutics, 1993, 264, 701-8.	2.5	12
382	Rapid degradation of substance P and related peptides during microiontophoretic experiments. Neuroscience Letters, 1977, 6, 27-33.	2.1	11
383	Opposite actions of muscarinic and nicotinic agents on hippocampal dendritic negative fields recorded in rats. Neuropharmacology, 1983, 22, 239-243.	4.1	11
384	Calbindin-D 28K in hippocampal organotypic cultures. Brain Research, 1989, 486, 165-169.	2.2	11
385	Increased synthesis of specific proteins during glutamate-induced neuronal death in cerebellar culture. Brain Research, 1994, 654, 27-33.	2.2	11
386	Is it Safe to Use a Diuretic to Treat Seizures Early in Development?. Epilepsy Currents, 2011, 11, 192-195.	0.8	11
387	The Yin and Yen of GABA in Brain Development and Operation in Health and Disease. Frontiers in Cellular Neuroscience, 2012, 6, 45.	3.7	11
388	The GABA Polarity Shift and Bumetanide Treatment: Making Sense Requires Unbiased and Undogmatic Analysis. Cells, 2022, 11, 396.	4.1	11
389	Induction of c-fos mRNA expression in an in vitro hippocampal slice model of adult rats after kainate but not \hat{l}^3 -aminobutyric acid or bicuculline treatment. Neuroscience Letters, 1994, 166, 73-76.	2.1	10
390	Contributions of AMPA and GABAA receptors to the induction of NMDAR-dependent LTP in CA1. Neuroscience Letters, 1997, 238, 119-122.	2.1	10
391	Morphology of CA3 non-pyramidal cells in the developing rat hippocampus. Developmental Brain Research, 2001, 127, 157-164.	1.7	10
392	Phenobarbital, midazolam, bumetanide, and neonatal seizures: The devil is in the details. Epilepsia, 2021, 62, 935-940.	5.1	10
393	Effects of neonatal γ-ray irradiation on rat hippocampus—II. Development of excitatory amino acid binding sites. Neuroscience, 1991, 42, 151-157.	2.3	9
394	The immature brain needs GABA to be excited and hyperâ€excited. Journal of Physiology, 2011, 589, 2655-2656.	2.9	9
395	Synapses as Therapeutic Targets for Autism Spectrum Disorders: An International Symposium Held in Pavia on July 4th, 2014. Frontiers in Cellular Neuroscience, 2014, 8, 309.	3.7	9
396	Unit spontaneous activity in the amygdala: relation between the long term stability of the discharge and the EEG. Brain Research, 1971, 32, 479-483.	2.2	8

#	Article	IF	CITATIONS
397	Amygdala unit activity changes related to a spontaneous blood pressure increase. Brain Research, 1973, 52, 394-398.	2.2	7
398	Long-term potentiation in the rat hippocampus induced by the mast cell degranulating peptide: Analysis of the release of endogenous excitatory amino acids and proteins. Neuroscience, 1990, 35, 63-70.	2.3	7
399	Transient cerebral ischemia induces changes in SRIF mRNA in the fascia dentata. Molecular Brain Research, 1991, 10, 337-342.	2.3	7
400	Correlative fluorescence and electron microscopy of biocytin-filled neurons with a preservation of the postsynaptic ultrastructure. Journal of Neuroscience Methods, 2002, 117, 81-85.	2.5	7
401	(R)-roscovitine, a cyclin-dependent kinase inhibitor, enhances tonic GABA inhibition in rat hippocampus. Neuroscience, 2008, 156, 277-288.	2.3	7
402	Alteration in the time and/or mode of delivery differentially modulates early development in mice. Molecular Brain, 2020, 13, 34.	2.6	7
403	Benzodiazepines modulate calcium spikes in young and adult hippocampal cells. NeuroReport, 1994, 5, 2125-2129.	1.2	6
404	Epileptiform activity but not synaptic plasticity is blocked by oxidation of NMDA receptors in a chronic model of temporal lobe epilepsy. Epilepsy Research, 1997, 26, 373-380.	1.6	6
405	Epilepsy: changes in local glucose consumption and brain pathology produced by kainic acid. Advances in Biochemical Psychopharmacology, 1981, 27, 385-94.	0.1	6
406	Use of two-dimensional gel electrophoresis to characterize protein synthesis during neuronal death in cerebellar culture. Electrophoresis, 1996, 17, 1781-1786.	2.4	5
407	The GluR2 (GluRB) hypothesis in ischemia: missing links. Trends in Neurosciences, 1998, 21, 241-242.	8.6	5
408	Kainate and temporal lobe epilepsies: Three decades of progress. Epilepsia, 2010, 51, 40-40.	5.1	5
409	Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plasticity, 2019, 2019, 1-11.	2.2	5
410	Using bumetanide to treat autism appears promising but further clinical trials are needed to confirm this approach. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 1395-1397.	1.5	5
411	Long-term potentiation and sprouting of mossy fibers produced by brief episodes of hyperactivity. Epilepsy Research Supplement, 1992, 7, 261-9.	0.0	5
412	Excitation and inhibition in temporal lobe epilepsy: a close encounter. Advances in Neurology, 1999, 79, 821-8.	0.8	5
413	A united theory for the multiple forms of LTP?. Trends in Neurosciences, 1995, 18, 519-520.	8.6	4
414	Brain Volumes in Mice are Smaller at Birth After Term or Preterm Cesarean Section Delivery. Cerebral Cortex, 2021, 31, 3579-3591.	2.9	4

#	Article	IF	CITATIONS
415	Krešimir Krnjević (1927–2021) and GABAergic inhibition: a lifetime dedication. Canadian Journal of Physiology and Pharmacology, 2021, , 1-4.	1.4	4
416	Seizures and brain damage: are excitatory amino acids involved?. Advances in Experimental Medicine and Biology, 1986, 203, 709-11.	1.6	4
417	Lability of synaptic inhibition of hippocampal pyramidal cells [proceedings]. Journal of Physiology, 1980, 298, 36P-37P.	2.9	4
418	Down-regulation of striatal enkephalinergic (PPA) messenger RNA without prior apoptotic features following reversible focal ischemia in rat. Brain Research, 1997, 744, 185-187.	2.2	3
419	GABA Excitation during Development: the Nature of the Nurture. Neurophysiology, 2002, 34, 81-82.	0.3	3
420	Relevance of Basic Research to Clinical Data: Good Answers, Wrong Questions!. Epilepsy Currents, 2008, 8, 19-22.	0.8	3
421	Effects of colchicine treatment on the cholinergic septohippocampal system. Exs, 1989, 57, 288-294.	1.4	3
422	Seizure-induced molecular changes, sprouting and synaptogenesis of hippocampal mossy fibers. Epilepsy Research Supplement, 1996, 12, 355-63.	0.0	3
423	Response: kainate receptors keep the excitement high. Trends in Neurosciences, 2001, 24, 140-141.	8.6	2
424	Physiologic and pathologic oscillations. Trends in Neurosciences, 2007, 30, 307-308.	8.6	2
425	GABA GABA Excites Immature Neurons: Implications for the Epilepsies. , 2009, , 278-284.		2
426	Is the awakening produced by benzodiazepines due to excitatory actions of GABA?. Translational Medicine Communications, 2021, 6, .	1.4	2
427	Treating Autism With Bumetanide: Are Large Multicentric and Monocentric Trials on Selected Populations Complementary?. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 937-938.	0.5	2
428	Long-Term Plasticity at Inhibitory Synapses. Frontiers in Neuroscience, 2006, , 23-36.	0.0	2
429	Prenatal reduction of E14.5 embryonically fateâ€mapped pyramidal neurons in a mouse model of autism. European Journal of Neuroscience, 2022, 56, 3875-3888.	2.6	2
430	The multiple facets of GABA. Trends in Neurosciences, 2005, 28, 277.	8.6	1
431	From basic science to novel treatments: lost in translation. Trends in Neurosciences, 2008, 31, 53.	8.6	1
432	Fast Ripples: What Do New Data about Gap Junctions and Disrupted Spike Firing Reveal about Underlying Mechanisms?. Epilepsy Currents, 2009, 9, 57-59.	0.8	1

#	Article	IF	CITATIONS
433	Progress in autism research and postgenomic studies. Lancet Neurology, The, 2016, 15, 136.	10.2	1
434	Disruptions in chloride transporter activity in autism spectrum disorders. , 2020, , 549-568.		1
435	OSCILLATORY ACTIVITY Seizures Beget Seizures in the Developing Brain: Central Role of GABA and High Frequency Oscillations. , 2009, , 1019-1023.		1
436	Brain damage caused by seizure activity. Electroencephalography and Clinical Neurophysiology Supplement, 1987, 39, 209-11.	0.0	1
437	Pronostiquer tôt les troubles du spectre autistiqueÂ: Un dÃ@fiÂ?. Medecine/Sciences, 2022, 38, 431-437.	0.2	1
438	Acetylcholine: synaptic transmitter of the arousal system?. Behavioral and Brain Sciences, 1978, 1, 485-486.	0.7	0
439	Opioid peptides and long-term potentiation. Neurochemistry International, 1992, 20, 469-471.	3.8	0
440	Epilepsy: models, mechanisms and concepts. Trends in Neurosciences, 1994, 17, 353-354.	8.6	0
441	342 Inhibition of the activity of poly (ADP-ribose) synthase reduces ischaemic injury and inflammation in neonatal rat brain. European Journal of Paediatric Neurology, 1999, 3, A128-A129.	1.6	0
442	Fourth INMED/TINS conference: Nature and nurture in brain development and neurological disorders. Trends in Neurosciences, 2006, 29, 347-348.	8.6	0
443	GABAA Receptors: Developmental Roles. , 2009, , 453-461.		0
444	GABA., 2013,, 773-790.		0
445	The GABA developmental shift in health and disease. , 2020, , 277-296.		0
446	Bumetanide to treat autism spectrum disorders: Clinical observations. , 2020, , 701-708.		0
447	Blockade of Specific K+ Channels Produces a Ca++ Dependent Form of Long-Term Potentiation in the Hippocampus. Research and Perspectives in Neurosciences, 1991, , 61-65.	0.4	0
448	Do NMDA antagonists suppress interictal discharges?. , 1992, 8, 167-172.		0
449	Le virus VIH-1 et la mort neuronale : \tilde{A} ©tude des effets de la prot \tilde{A} ©ine de l'enveloppe virale gp120 Medecine/Sciences, 1996, 12, 660.	0.2	0
450	Epilepsie et troubles de la migration neuronale : les hétérotopies forment des ponts entre structures normalement non connectées Medecine/Sciences, 1998, 14, 1260.	0.2	0